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Abstract

We formulate cyber security problems with many strategic attackers and defenders
as stochastic dynamic games with asymmetric information. We discuss solution ap-
proaches to stochastic dynamic games with asymmetric information and identify the
difficulties/challenges associated with these approaches. We present a solution method-
ology for stochastic dynamic games with asymmetric information that resolves some
of these difficulties. Our main results are based on certain key assumptions about the
game model. Therefore, our methodology can solve only specific classes of cyber se-
curity problems. We identify classes of cyber security problems that our methodology
cannot solve and connect these problems to open problems in game theory.

1 Introduction

The high and continually increasing connectivity of modern cyber networks has resulted
in significant improvement in the functionality and efficiency of our networked systems,
but has also created new entry points for attackers, thus making these systems more vul-
nerable to intrusion. As noted by Miehling et al. [23], recent events such as information
leakage and theft [7], car hacking [11], and denial of service attacks [6], have highlighted
this vulnerability. Such vulnerability has become an issue of great concern because (i) the
operation of critical infrastructure is increasingly reliant upon (potentially unreliable) net-
worked systems and (ii) cyber attacks are becoming persistent and increasingly sophisti-
cated. As reported by the Department of Homeland Security’s Industrial Control Systems
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Cyber Emergency Response Team (ICS-CERT), attacks on the critical infrastructure sec-
tors (such as energy, communication, manufacturing, transportation, and water systems)
have remained persistent over the past few years, with 245 in 2014, 295 in 2015, and 290
in 2016 [28], and many of the recent intrusions have had the potential to inflict severe and
widespread damage (an increasing number of attacks have reached the system’s control
system layer [28]). Therefore, it is imperative to detect and mitigate cyber attacks so as
to ensure secure operation of society’s critical systems.

Cyber security is a complex problem. The complexity of the problem stems primarily
from the fact that many individuals/agents (attackers, defenders) with different objectives,
and different information about the cyber network’s structure/topology and security status
interact with one another through the network. At each time instant the cyber network’s
security status and each agent’s information depend, in general, on exogenous random
events (e.g., random failures in hosts and connections among hosts) and all the agents’
strategies; such strategies are not common knowledge [1, 41] among all agents. Further-
more, the degree to which each agent achieves his objectives depends on his strategy and
all the other agents’ unknown strategies. Agents can use these these features of the cy-
ber security problem to their advantage. For example, an attacker can take undetectable
actions, or detectable actions that do not fully reveal intent; a defender can likewise take
actions that are not observable by attackers. Under these conditions, the determination
of strategic equilibria—configurations of strategies that leave no agent any incentive to
deviate—is a formidable problem.

In this chapter we propose and present a game-theoretic approach to the cyber security
problem. In Section 2 we explain why the formulation of the cyber security problem as
a stochastic dynamic game with asymmetric information provides a reasonable approach
to the problem. Then, in the remainder of the chapter we present: the game model that
captures the salient features of cyber security problems (Section 3); current approaches
to stochastic dynamic games with asymmetric information and the difficulties/challenges
associated with them (Section 4); a new approach/methodology that resolves some of
these difficulties along with a discussion of the methodology’s key results (Section 5); the
literature on game theory that is relevant to cyber security problems (Section 6); some
open problems in game theory that are tightly connected to cyber security (Section 7).

The literature on stochastic dynamic games with asymmetric information is rich in
deep ideas and is very technical, therefore, it is not easily accessible. Our goal in this
chapter is to present and explain, in as plain language as possible, the key ideas behind the
approaches to stochastic dynamic games with asymmetric information along with the main
results of our approach to these games. For this reason we provide an informal presentation
of the approaches to and the results on dynamic games of asymmetric information along
with references that formally describe these approaches and results. The results presented
in this chapter summarize a series of papers describing our work, motivated by issues in
cyber security, on dynamic games with asymmetric information [30, 31, 36, 37, 38, 39].
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2 The Cyber Security Problem as a Stochastic Dynamic
Game with Asymmetric Information

As pointed out in the introduction, cyber security is a multi-agent problem involving at-
tackers and defenders. The salient features of cyber security problems are: (i) Attacks are
progressive in nature. Attackers are using their capabilities to attack and capture com-
puters/hosts. Defenders attempt, through their actions, to retake hosts that are under
the attackers’ control and to limit the attackers’ exploits (e.g., by isolating certain hosts
from the rest of the network). As a result of the attackers’ and defenders’ actions, the
security status of the network changes/evolves over time. The evolution is also affected by
the occurrence of random events (e.g., random failures in hosts and connections between
hosts) in the cyber network. (ii) Each agent has different information about the network’s
security status. For example: each defender knows in part the network’s topology, but does
not know the hosts/computers that are under the attackers’ control and the information
of other defenders; each attacker knows the hosts he has captured, but does not know the
network’s topology and the hosts captured by other attackers. In addition to their private
information, attackers and defenders possess, at any time instant, some common informa-
tion, consisting of events which they all observe, such as an attack to a group of servers
that is detected and the detection is common knowledge ([2, 41]) among all attackers and
defenders (for examples of events that are common information see [6, 7, 11, 28]). (iii) At-
tackers and defenders are strategic and self-interested: each agent attempts to optimize
his own objective rather than a social/agent-wide objective. (iv) Each agent has different
objectives. An attacker’s objective is to acquire the information he is looking for and to
take control of the cyber network. A defender’s objective is to protect the information
that is stored in the network without compromising too much the network’s integrity and
availability (a defender can protect his network by turning off the corresponding section of
the network, however, such an action would make that section unavailable to its users).

As a result of the above features, the cyber security problem can be formulated as
a dynamic game with asymmetric information where the underlying system is stochastic
and dynamic. The attackers’ and defenders’ different objectives along with their strategic
behavior lead to a game. The stochastic and dynamic nature of the game is due to the fact
that the attackers’ and defenders’ information changes over time (it increases over time)
and the network’s security status evolves randomly over time. The fact that attackers and
defenders possess, at every time instant, private information (in addition to their common
information) results in an asymmetric information structure, thus a game with asymmetric
information.
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3 The Game Model

We present a model that captures the salient features of cyber security problems discussed
in the previous section. We consider a stochastic dynamic system the evolution of which
over a time horizon T is affected by the decisions/actions of N strategic agents along with
random events that occur in nature. Such a system is described by a stochastic difference
equation. Specifically, the system’s state at time t + 1, Xt+1, is a function of its state
Xt at time t, the actions Ait, i = 1, 2, . . . , N , of the N strategic agents at t, and random
events that occur at time t and are statistically independent of the system’s state at t
and the agents’ actions at t. At each time t, each agent has some noisy/imperfect private
information about the system’s evolution up to time t; such information is described by
noisy observations of Xt and all the agents’ actions At−1 = (Ait−1, i = 1, 2, . . . , N) at time
t− 1. Furthermore, all agents have some noisy/imperfect common information about the
system’s evolution up to t; such information is described by common noisy observations
of the system’s state Xt and all the agents’ actions At−1. We assume that the system’s
state, all the agents’ private and common observations, and all the agents’ actions are finite-
valued. All agents have perfect recall, that is, at any time t, they remember everything they
have observed up to t and all the actions they have taken up to t− 1. Denote by P it agent
i’s private information at t and by Ct the agents’ common information at t, i = 1, 2, . . . , N ,
t = 1, 2, . . . , T . At each time t, agent i’s action, i = 1, 2, . . . , N , is generated by git, his
strategy at t; git is a function of i’s private information P it at t and the common information
Ct at t. We denote by gi agent i’s strategy profile in the T -horizon game; gi is the collection
of strategies git, t = 1, 2, . . . , T . We term the collection of the agents’ strategy profiles gi,
i = 1, 2, . . . , N , the strategy profile g in the T -horizon game. At each t, agent i has an
instantaneous utility U it (Xt, At) that is a function of the system’s state Xt and all the
agents’ actions Ait, i = 1, 2, . . . , N . Each strategic agent’s objective is to determine his
strategy profile so as to maximize the expected sum of his instantaneous utilities from the
beginning (time 1) until the end of the game (time T ).

The state Xt represents the system’s/network’s security status at time t. The pro-
gressive nature of cyber attacks is captured by the fact that Xt evolves dynamically over
time, and its evolution at any time t is affected by the agents’ (attackers’ and defenders’)
actions at t and random events that occur in nature at t, such as network failures, and are
independent of the agents’ actions and the system’s security status. Since cyber security
systems are networks consisting of a finite number of computers, each computer’s security
status can be described by one of a finite number of states and each agent can take at any
time t a finite number of actions, it is reasonable to assume that the system’s state space
along with the observation and action spaces are finite. We assume that all agents have
perfect recall, that is, every agent remembers everything he has seen and every thing he
has done. We will discuss the implication of this assumption in the analysis of dynamic
games with asymmetric information later in this chapter. We wish to bring to the reader’s
attention two important features of the above-described model. (1) The instantaneous
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utility of each agent (hence his overall utility) depends on all agents’ actions that are not
all perfectly observable and are generated by their respective strategies. Therefore, each
agent’s choice of strategy must take into account all the other agents’ choice of strategies,
thus the agents’ strategy choices are inter-dependent. (2) Since the dynamic system’s evo-
lution over time depends on all the agents’ actions through their strategy choices, at any
time t, each agent’s information, private and common, depends on all agents’ strategies up
to t− 1. These two features of the model result in significant difficulties in the analysis of
dynamic games with asymmetric information and in the computation of the appropriate
equilibria. We will discuss these difficulties along with ways of overcoming them in the rest
of this chapter.

We conclude this section by presenting an example, drawn from [30, 31], that we will
use throughout the chapter to illustrate the ideas and results we present. Even though the
model of the example does not capture all the essential features of cyber security problems,
(the current state of the art on stochastic dynamic games with asymmetric information
cannot be used to solve the cyber security problem in its full generality), we hope that it
will help the reader to understand and appreciate the difficulties/issues that arise in these
games along with the key ideas of our approach.

An Example

Consider a game, played over a time horizon T , with N agents that are split into
two groups. Group 1 consists of N1 agents, group 2 consists of N2 agents, N1 + N2 =
N . The state of the dynamic system at time t is denoted by Xt = (X1

t , X
2
t , . . . , X

N1
t

). The component Xn
t of the state is privately observed by agent n in group 1. The

private state Xn
t has uncontrolled Markovian dynamics with given time-invariant ma-

trix of transition probabilities Qn, n = 1, 2, . . . , N1. At the beginning of time t, each
agent n in group 1 observes Xn

t , n = 1, 2, . . . , N1 and takes an action Ant . The actions
At = Ant , n = 1, 2, . . . , N1 are announced to all N agents. After this announcement, agent
m, m = 1, 2, . . . , N2, in group 2 makes a decision Dm

t = (Dm
t (1), Dm

t (2), . . . , Dm
t (N1)).

Let Dt = (D1
t , D

2
t , . . . , D

N2
t ) denote the decisions of the agents in group 2 at time t.

The decisions Dt are observed by all N agents. After the decisions Dt are made, all
agents receive noisy observations Y 1

t , Y
2
t , . . . , Y

N1
t of the states X1

t , X
2
t , . . . , X

N1
t , respec-

tively. The utility of agent n, n = 1, 2, . . . , N1, in group 1 is given by Un,1t (At, Dt) =
(Ant − c)(

∑N2
i=1D

i
t(n)). The utility of agent m, m = 1, 2, . . . , N2, in group 2 is given by

umt (Yt, Dt, At) = V m
t (Yt, Dt)− (

∑N1
i=1D

m
t (i)Ait), where V m

t (Yt, Dt) is a given function of Yt
and Dt, and Yt = (Y 1

t , Y
2
t , . . . , Y

N1
t ).

We assume that the state Xt of the dynamic system, the agents’ actions At, Dt and the
observations Yt, t = 1, 2, . . . , T take values in finite spaces. Furthermore, we assume that
the Markov state processes Xn

t , t = 1, 2, . . . , T, n = 1, 2, . . . , , N1, describing the evolution
of the dynamic system, and the observations Yt, conditioned on Xt, t = 1, 2, . . . , T , are all
mutually independent.

In this game, the private information of agent n in group 1 at time t, before any
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action/decision is made at t, is Pnt = Xn
1:t, where Xn

1:t = Xn
1 , X

n
2 , . . . , X

n
t ,n = 1, 2, . . . , N1.

Agents in group 2 have no private information at any time. The common information of
all N agents at time t is Ct = A1:t−1, D1:t−1, Y1:t−1,

The action/decisison of agent n, n = 1, 2, . . . , N , at time t is a function gnt of his private
information Pnt at t and the common information Ct at t. The functions gnt , t = 1, 2, . . . , T
define agent n’s strategy gn in the game. The collection of strategies gn, n = 1, 2, . . . , N ,
define the strategy profile played in the game.

4 Current Approaches to Dynamic Games with Asymmetric
Information and the Associated Challenges

We provide an informal presentation of the key ideas underlying current approaches to
dynamic games with asymmetric information along with the challenges associated with
these approaches. For a formal presentation of current approaches to dynamic games with
asymmetric information we refer the reader to [9, 25, 29].

The fundamental difficulties in the analysis of stochastic dynamic games with asym-
metric information arise from the fact that the agents involved in the game (e.g. attackers
and defenders) are strategic, they possess private information, their private and common
information increase over time, their strategy choices are inter-dependent, and each agent’s
information depends, in general, on the strategies employed by all other agents.

To address these difficulties, classical approaches to dynamic games with asymmetric
information proceed by taking into account the following considerations. At every instant
of time, each agent has to form: (i) An appraisal about the current state of the (stochastic
dynamic) system (e.g., the current security status of the network) and the other agents’
private information; such an appraisal is about the history/past of the game. (ii) An
appraisal about how other agents will play in the future so as to evaluate the performance
of his strategy choices; such an appraisal is about the future of the game. Consider any
agent, say agent i; given the other agents’ strategies, at each time t, agent i can utilize
his information (private and common) at t along with (i) all other agents’ past strategies
up to time t − 1 and (ii) all other agents’ future strategies from t up to T to form these
appraisals about the the history/past and the future of the game, respectively.

Since each agent has his own objective, each agent’s strategy is his own private in-
formation, thus, it is not known to other agents. Therefore, each agent has to form a
prediction about the other agents’ strategies. According to Nash’s idea/model, all agents
have a “common prediction about the strategy profile” played in the game (as stated in
Section 3, a strategy profile describes all agents’ strategies at all times). Such a prediction
strategy profile does not necessarily coincide with the actual strategy profile that is being
played in the game. Thus, it is possible that an agent’s strategy, say agent i’s strategy,
is different from the prediction strategy profile. Denote by g∗ := (g∗1, g∗2, . . . , g∗N ) the
common prediction about the agents’ strategy profile, where g∗i is the strategy prediction
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profile for agent i (his strategy from time 1 up to time T ); denote by g := (g1, g2, . . . , gN )
the actual strategy profile, that is, the strategy profile that is being played by the agents,
i.e. g∗i 6=gi, in the game. Below we discuss the implications of agent i’s deviation from the
prediction strategy profile on all agents’ behavior. For that matter, we first consider agent
i who may want to deviate from his predicted strategy, then we examine the response of
an agent who faces such a deviation, and finally we discuss how an agent determines his
optimal strategy at each time t for all realizations of his information.

When agent i chooses a strategy, he needs to know how other agents will play/react
for any choice that is different from the prediction strategy profile g∗i. Since a deviation
from agent i may generate information (e.g. an observation) that is not expected when
the prediction strategy profile g∗ is played by all agents, (that is, information that has zero
probability according to g∗), the prediction strategy profile g∗ has to determine how agents
will act for all possible realizations of their information, even those realizations that have
zero probability according to it. Then, using g∗, agent i can form an appraisal about the
future of the game for any choice of his own strategy and can evaluate the performance of
that strategy.

By the same rationale, when agent i chooses any strategy gi, he needs to determine that
strategy for all possible realizations of his information, even those that have zero probability
according to the prediction strategy profile g∗1, g∗2, . . . , g∗(i−1), g∗(i+1), . . . , g∗N . This is
because some other agent j, different from i, may deviate from the prediction strategy
profile g∗j , therefore, agent i must foresee such a possible deviation and must determine
his response (according to gi) to these deviations.

To determine his optimal strategy for all realizations of his information (those that have
positive or zero probability under the prediction strategy profile g∗), at each time t, an
agent, say agent i, needs to form an appraisal about the history of the game at t along with
an appraisal about the future of the game under the assumption that all other agents follow
the prediction strategy profile g∗. To form an appraisal about the history of the game at
t, agent i proceeds as follows. For all realizations of his information up to and including
t that have positive probability under g∗, he uses Bayes’ rule to form this appraisal. For
any realization of information up to and including t that has zero probability under g∗,
agent i cannot rely on the strategy prediction g∗ up to time t − 1 and use Bayes’ rule to
form this appraisal. The realization of information of zero probability under g∗ tells agent
i that his original prediction up to time t − 1 is not completely correct, consequently, he
needs to revise his original strategy prediction up to t− 1 and to form a revised appraisal
about the history of the game at t. Therefore, agent i must determine how to revise/form
his appraisal about the history of the game at t for all realizations of his information that
have zero probability under the prediction strategy profile g∗.

In the game theoretic literature [9] the above considerations are formalized as follows.
Each agent’s appraisals, say agent i’s appraisals, about the history and future of the game
are captured by an assessment which consists of a strategy prediction profile g∗ (that is
common to all agents) and a belief µit, for each time t, on the system’s state and the
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other agents’ private information at t, based on agent i’s information at t; for each t, the
realization of such a belief is, in general, agent i’s private information. The collection
µ := (µit, i = 1, 2, . . . , N, t = 1, 2, . . . , T ) of all agents’ beliefs at all times is called a belief
system µ. At any time t and for any realization of agent i’s information at t (such a
realization may have positive or zero probability under the strategy prediction profile g∗)
agent i’s belief at t determines his appraisal about the history of the game at t; agent i’s
appraisal at t about the future of the game is determined by his belief µit at t and the
prediction strategy profile g∗t:T = (g∗t , g

∗
t+1, . . . , g

∗
T ) from t until T (the end of the game).

Based on the definition of assessment, game theorists extended the concept of Nash equi-
librium to dynamic games with asymmetric information. An equilibrium of the dynamic
game is defined as a common assessment among the agents that satisfies the following
conditions under the assumption that agents are rational. (1) Agent i, i = 1, 2, . . . , N ,
chooses his strategy to maximize his total expected utility in all continuation games (i.e.
the game’s continuation from t until T for all t = 1, 2, . . . , T − 1) given the assessment
about the game. Consequently, the prediction about agent i’s strategy that other agents
hold must be a maximizer of agent i’s total expected utility under the assessment about
the game. (2) For all times t, any agent i’s belief at t that is based on a realization of
information that has positive probability under the common assessment must be equal to
the conditional probability, under the strategy prediction profile of the common assess-
ment, of the system’s state and the other agents’ private information at t; this conditional
probability for agent i is determined via Bayes’ rule when all other agents play according
to the common assessment’s prediction strategy profile. When the realization of agent i’s
information at t has zero probability under the prediction strategy profile of the common
assessment, his belief at t cannot be determined via Bayes’ rule and must be revised. The
revised belief must satisfy a certain set of reasonable conditions so as to be compatible
with agent i’s rationality. Game theorists have proposed various sets of conditions (see
[9, 25, 29]) to capture the notion of reasonable beliefs that are compatible with the agents’
rationality. Different sets of conditions for off-equilibrium beliefs, that is, beliefs along off
the equilibrium paths of the game (i.e. paths of zero probability under the common strategy
prediction component of the assessment) result in different equilibrium/solution concepts
(such as perfect Bayesian equilibria, sequential equilibria, perfect equilibria, proper equilib-
ria, persistent equilibria, etc) that have been proposed for dynamic games with asymmetric
information (see [9, 25, 29] for the definition and meaning of all these equilibrium concepts).

Perfect Bayesian Equilibrium (PBE) [9, 42], is an equilibrium concept that has been
widely accepted as an appropriate solution concept for dynamic games with asymmetric
information. A PBE is defined as an assessment (a strategy prediction g∗ and a belief sys-
tem µ) that satisfies the sequential rationality and consistency conditions. The sequential
rationality and consistency conditions for dynamic games with asymmetric information
where the underlying system is dynamic are formally defined in [36]. Here we verbally
describe these conditions.

Sequential Rationality. Consider any agent at any time, say agent i at time t.
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Given agent i’s information (private and common) at t, his belief at t according to the
assessment, and the prediction of all other agents’ strategies from t until T according to
the assessment, agent i’s strategies that maximize his (total) expected utility from t until T
are the same as his corresponding strategies from t until T in the assessment.

Sequential rationality requires that the common prediction g∗i about agent i’s strategy
must be an optimal strategy choice for him since it is common knowledge that he is a
rational agent. We note that the sequential rationality condition is more restrictive than
the optimality condition for Bayesian Nash Equilibrium (BNE) which requires that the op-
timality condition in italics above should hold only for t = 1. By the sequential rationality
condition we require the optimality of the strategy prediction g∗ even along paths of the
game’s evolution that are off-equilibrium (i.e. paths that have zero probability under g∗),
thus, we rule out the possibility of non-credible threats. Consider for example an agent who
threatens to play an action that is suboptimal for himself upon the realization of a history
that has zero probability under the strategy prediction g∗ of the assessment. Such a non-
credible threat is ruled out by sequential rationality (hence by PBE) but is not ruled out
by BNE. Sequential rationality gives rise to a set of conditions that the strategy prediction
g∗ must satisfy given the belief system µ of the assessment. As discussed above, the belief
system µ of the assessment should also be compatible with g∗. The compatibility between
the strategy prediction component of the assessment and the belief system component of
the assessment is captured by the consistency condition.

Consistency. The consistency condition requires that along all equilibrium paths (that
is, game histories that are realized when all agents play an equilibrium strategy profile) the
agents’ beliefs should be updated/evolve according to Bayes’ rule. Along all other paths of
the game’s evolution, the consistency condition requires that if the information received by
an agent i at time t has zero probability under the assessment, agent i’s belief at t must be
revised in a “reasonable” manner.

The work in [36] presents a set of “reasonable” conditions for revising an agent’s beliefs
along off-equilibrium paths of the game’s evolution.

Even though the definition of PBE provides a general formalization of outcomes that are
rationalizable (that is, consistent with agents’ rationality) under some strategy profile and
belief system, computation of PBEs is a formidable task. There are two major challenges
in computing a PBE (g∗, µ). First, there is an inter-temporal coupling between the agents’
strategy prediction g∗ and the belief system µ. As discussed before, according to the
consistency requirement, the belief system µ must satisfy a set of conditions given a strategy
prediction g∗ (see [36, 39]). On the other hand, sequential rationality dictates that a
strategy prediction g∗ must satisfy a set of optimality conditions given the belief system
µ (see [36, 39]). Therefore, there is a circular dependency between a strategy prediction
g∗ and a belief system µ. For example, by sequential rationality, agent i’s strategy gi∗t
at time t depends on the agents’ future strategies g∗t:T , (where t : T denotes the time
interval t, t + 1, t + 2, . . . , T ), and on the agents’ past strategies g∗1:t−1 indirectly through
the consistency condition for µit. As a result, one has to determine the strategy prediction
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g∗ and the belief system µ simultaneously for the whole time horizon so as to satisfy all
the sequential rationality and consistency conditions; consequently, one cannot sequentially
decompose over time the computation of PBEs. Second, since the agents’ are assumed to
have perfect recall their information (private and common) increases over time, thus, their
strategies have a growing domain over time; this feature of the agents’ strategies further
complicates the computation of PBEs.

We continue discussing the example we introduced at the end of Section 3. Here we
illustrate the concepts introduced in this section along with the difficulties that arise in the
determination of equilibrium strategies in dynamic games with asymmetric information.

An Example (continued)

An assessment of the game is described by a strategy prediction profile
g∗ = (g∗1, g∗2, . . . , g∗N ), that is common to all agents, and a belief system µit, i = 1, 2, . . . , N,
t = 1, 2, . . . , T . The component g∗i = (g∗i1 , g

∗i
2 , . . . , g

∗i
T ) describes the strategy player i is

predicted to play in the game. The strategy g∗i may be different from the actual strategy
gi player i plays in the game. The component µit describes agent i’s belief at time t about
the state of the system Xt and the private information P jt of all agents j other than i at
time t, conditioned on agent i’s private information P it and the common information Ct
(the private and common information for all agents at all times have been specified at the
beginning of this example, at the end of Section 3).

At any time t,the beliefs µit, i = 1, 2, . . . , N , depend on g1:t−1, the strategies of all agents
up to time t− 1. At each time t, when an agent, say agent i, determines his best strategy
from t up to time T according to the sequential rationality requirement, he takes into
account the strategy prediction profile for all other agents form t up to T and his belief
µit. Therefore, the (equilibrium) strategies and beliefs of all agents are interdependent
over time and must all be determined simultaneously for the whole duration of the game.
This fact highlights one of the major difficulties associated with the current approaches to
stochastic dynamic games with asymmetric information.

As pointed out at the beginning of this example, (end of Section 3), the private infor-
mation of each agent i in group 1 at time t is P it = Xi

1:t, i = 1, 2, . . . , N1. The common
information of all agents at time t is Ct = A1:t−1, D1:t−1, Y1:t−1. Consequently, the do-
mains of private and common information increase with time, therefore , for large time
horizons T, the computation of equilibria becomes a formidable task. This fact highlights
another difficulty associated with the current approaches to stochastic dynamic games with
asymmetric information.

In the next section we present an approach to dynamic games with asymmetric infor-
mation that addresses and partly resolves the above challenges.
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5 A Sufficient Information Approach to Stochastic Dynamic
Games with Asymmetric Information

The definition of PBE requires agents to keep track of all the information they acquire
over time and to form beliefs about the private information of all other agents. In this
section we show that agents do not need to keep track of all their past information to
reach an equilibrium; at any time t, they can take into account only a subset of the
information available at t that is relevant to the continuation of the game, and ignore the
rest of it. Such a selection of the relevant information is motivated by computational and
philosophical reasons: the resulting strategies are simpler and the corresponding PBE are
easier to compute; furthermore, the simpler strategies proposed in this section offer a more
plausible prediction of the outcome of the interactions among strategic agents in cyber
security games where the underlying system is dynamic (due to the progressive nature of
attacks) and there is significant asymmetry in the information possessed by the agents
(attackers and defenders).

The above discussion motivates the approach to dynamic games with asymmetric in-
formation that we present in this section. The key steps of our approach are as follows.

1. We present conditions sufficient to guarantee that all the agents involved in the
game can compress their private information in a mutually consistent manner. Such
a mutually consistent compression leads to the notion/concept of sufficient private
information.

2. Using the notion of sufficient private information, we present a compression of the
common information. Such a compression of the common information leads to the
concept of sufficient common information.

3. Using the notions of sufficient private information and sufficient common informa-
tion we define a set of strategies termed sufficient information based strategies (SIB
strategies), and a set of PBE termed Sufficient Information Based Perfect Bayesian
Equilibria (SIB-PBE). We show that the set of sufficient information based strategies
is closed under the best response correspondence. Thus, we establish the following
result: if all agents except one, say agent i, play sufficient information based strate-
gies, then there exists a sufficient information based strategy for agent i that is a best
response to those strategies. The implication of this result is that one can restrict
attention to SIB strategies to determine SIB-PBE.

4. Using the sufficient common information as an information state we provide a se-
quential decomposition of stochastic dynamic games with asymmetric information.
Such a decomposition leads to an algorithm for the determination of SIB-PBE. We
identify instances of games where SIB-PBE exist.
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5.1 Sufficient Private Information

Let Ct denote the agents’ common information at time t, and let P it denote agent i’s private
information at t, i = 1, 2, . . . , N .

Sufficient Private Information. We say that the collection St = (Sit , i = 1, 2, . . . , N),
(where each Sit a function of Ct and P it ), is sufficient private information for the N agents
if the following conditions are satisfied for all agents and for all times: (i) Each Sit can
be updated recursively, that is, Sit can be determined from Sit−1 and the new information
agent i acquires at time t. (ii) St,Ct and the agents’ actions At at t provide the infor-
mation sufficient to statistically determine the sufficient private information St+1 and the
common information Ct+1. (iii) Agent i’s expected utility at t conditioned on his private
information P it , the common information Ct, and the agents’ actions At at t, is the same as
his expected utility at t conditioned on his sufficient private information Sit , the common
information Ct and the agents’ actions At at t. Furthermore both expected conditional
utilities at t are independent of agent i’s strategy. (iv) The information provided by agent
i’s private sufficient information Sit and the common information Ct is sufficient for agent
i to statistically determine/predict the sufficient private information of all other agents.
Furthermore, this statistical determination/prediction is independent of agent i’s strategy.

The above discussion provides an informal presentation of conditions (i)-(iv); a for-
mal/mathematical description of these conditions can be found in [36, 38, 39].

We now provide an intuitive interpretation of the above conditions. Condition (ii)
requires that that agents’ sufficient private information must be rich enough so that, com-
bined with their common information and actions at any time t, it leads to the same
prediction of the sufficient private information and the new common information at t + 1
as the one that would be obtained if agents used all their information at t. Condition (iii)
is similar in spirit to one of the requirements defining an information state in centralized
stochastic control [18]. The essence of conditions (ii) and (iii) is that sufficient private infor-
mation must be a component of a statistic that is sufficient for decision making purposes.
Therefore, sufficient private information must be updated recursively (condition (i)). The
essence of condition (iv) is the following: the agents’ sufficient private information must
be defined by a mutually consistent compression of all the agents’ private information.
Such a compression must not entail any loss of information, as far as an agent’s ability to
statistically predict the other agents’ sufficient private information is concerned; further-
more, such a private information compression must be robust to agents’ possible unilateral
deviations from the strategy prediction g∗.

We would like to point out that the above conditions do not uniquely determine the
agents’ sufficient private information. These conditions may lead to many solutions in-
cluding the trivial one Sit = P it for all agents i, i = 1, 2, . . . , N . Therefore, an important
question is: is there a minimal sufficient private information for the agents? The existence
of a minimal sufficient private information for all agents is currently an important open
problem.
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5.2 Sufficient Common Information

Based on the characterization of sufficient private information, we introduce the notion of
sufficient common information which at any time t is a statistic/compressed version of the
common information Ct at t.

Sufficient Common Information. We define the agents’ sufficient common infor-
mation at any time t, denoted by Πt, to be the agents’ belief about the dynamic system’s
state Xt at t, and all the agents’ sufficient private information St at t, conditioned on the
common information Ct.

We call Πt the Sufficient Information Based (SIB) belief at t. The agents’ SIB belief at
t is computable by all agents, thus, it is common information ([1, 41]) among all agents.
The SIB belief Πt is recursively updated according to a SIB update rule ψt. Specifically,
Πt+1 is determined by Πt and the common information that becomes available at t, that
is Zt = Ct\C(t−1), according to ψt. If the realization of the information Zt has non-zero
probability according to the strategy prediction g∗, then ψt updates Πt according to Bayes’
rule; if the realization of Zt has zero probability according to g∗, then Πt+1 is updated
according to ψt in a reasonable manner that is consistent with the agents’ rationality (see

for example [36]). We denote by Πψ = (Πψ
t , t = 1, 2, . . . , T ) the sequence of SIB beliefs

generated by the update rule ψ := (ψt, t = 1, 2, . . . , T ).
The above discussion provides an informal presentation of the concept of sufficient com-

mon information. For a formal/mathematical description of sufficient common information
and its update we refer the reader to [36, 38, 39].

5.3 Sufficient Information-Based Strategies and Sufficient Information-
Based Perfect Bayesian Equilibria

The combination of sufficient private information (Sit , i = 1, 2, . . . , N, t = 1, 2, . . . , T ) and
sufficient common information Πt, t = 1, 2, . . . , T , provides a mutually consistent compres-
sion of the agents’ private and common information, respectively. Using this information
compression we define a class of strategies σit that are based on Sit and Πt for each agent i
at each time t. We call σit a Sufficient Information Based (SIB) strategy for agent i at time
t. A collection of SIB strategies σit, i = 1, 2, . . . , N , t = 1, 2, . . . , T , is termed a SIB strategy
profile σ. We note that at any time t the set of SIB strategies is a subset of all possible
strategies agents can choose at t by using all of their private and common information at
t. SIB strategies are simpler than general strategies because they have a smaller domain
than general strategies as they are based on compressed versions of the agents’ private and
common information at any time t. We further note that if the dimensionality of Sit , agent
i’s sufficient private information, i = 1, 2, . . . , N , remains fixed over time then the domain
of SIB strategies is time-invariant. In Section 5.5 we present instances of dynamic games
with asymmetric information where the domain of SIB strategies is time-invariant.

Based on the concept of SIB strategies we introduce the concept of Sufficient Infor-
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mation Based-Perfect Bayesian Equilibrium (SIB-PBE) that is informally described as
follows.

Sufficient Information Based-Perfect Bayesian Equilibrium (SIB-PBE). A
SIB-PBE is a PBE in which all agents play SIB strategies.

For a formal definition of SIB-PBE we need to consider, as in the case of PBE, a SIB
assessment that consists of a SIB strategy prediction profile σ and a SIB belief system µψ,
and to define the sequential rationality and consistency conditions that σ and µψ must
satisfy so that they should specify a SIB-PBE. A formal definition of SIB-PBE can be
found in [36].

The class of SIB assessments needed to formally define a SIB-PBE imposes two addi-
tional restrictions/requirements on the agents’ strategies and beliefs as compared to the
general class of assessments presented in Section 4. First, SIB assessments require that
each agent i, i = 1, 2, . . . , N , must play a SIB strategy σi instead of a general strategy
gi. Second, SIB assessments require that at every time t each agent i must form a belief
about the status of the game using only the SIB belief Πt along with his sufficient private
information Sit (instead of a general belief µit that is based on his private information P it
and the common information Ct). Such restrictions generate the following strategic con-
cerns. First, a strategic agent does not have to restrict his choice to SIB strategies, he may
deviate from a SIB strategy σi to a non-SIB strategy gi if such a deviation is profitable for
him. Second, at any time t, a strategic agent does not have to limit himself to forming a
belief about the status of the game by using only the SIB belief Πt and sufficient private
information Sit ; he may want to form a belief using all of his private information and all
the common information if such a belief enables him to improve his overall expected utility.
These concerns are addressed by the results of our methodology that appear in the next
section.

5.4 Main Results

The results we present in this section address the difficulties associated with current ap-
proaches to dynamic games with asymmetric information, specifically: the inter-dependence
over time between strategies and beliefs (Section 4); the growing domain of the agents’
strategies (Section 4); and the strategic concerns arising from restricting attention to SIB
strategies and SIB beliefs (Section 5.3). These results have been derived under the following
key assumption, the meaning of which we discuss in the following subsection.

Key Assumption. At any time t, t = 1, 2, . . . , T , and for any sequence of all the
agents’ actions up to time t − 1 the following conditions are satisfied: (C1) Every possi-
ble value xt of the system state Xt can be realized with positive probability. (C2) For
every agent, every possible value of his private observations can be realized with positive
probability.

We present an informal statement of the four main results of the sufficient information
approach to dynamic games with asymmetric information. A formal statement of condi-
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tions (C1) and (C2) along with a formal statement of the four main results and their proofs
can be found in [36].

Result 1. At any time t, every agent i’s private belief about the state of the dynamic
system and the the private information of all other agents is independent of his own strategy.

Result 2. If every agent j 6= i plays a SIB strategy σj , then there exists a SIB strategy
σi for agent i that is a best response to the strategies (σj , j 6= i).

Results 1 and 2 address the strategic concerns created by focusing on SIB strategies
and SIB beliefs, and, in part, the growing domain of the agents’ strategies. Result 1
shows that no agent can alter his private belief about the state of the dynamic system and
all the other agents’ private information by deviating from the predicted strategy profile.
Thus, when all agents j 6= i play according to a SIB assessment (σ∗, µψ) (where the belief
system µψ is determined by the update rule ψ described in Section 5.2), agent i cannot
mislead these agents by playing a strategy gi different from σi∗ , thus, creating dual beliefs
(one belief that is based on the SIB assessment (σi∗, µψ) the functional form of which is
known to all agents, and another belief that is based on his private strategy gi that is
only known to him) which he can use to his advantage. Result 2 shows that when all
agents play SIB strategies, no agent can profit by deviating from his SIB strategy to a
non-SIB strategy. Therefore, we can restrict attention to SIB strategies and attempt to
determine PBE within the class of SIB assessments, i.e. SIB-PBE. As pointed out above,
SIB strategies are simpler than general strategies ( which, at any time, are functions of
all the private and common information available to an agent at that time) because they
are based on compressed information. However, SIB strategies do not have, in general,
a time-invariant domain. Nevertheless, there are several instances in practice where SIB
strategies have a time-invariant domain ([30, 31, 37]).

Using Results 1 and 2 we can obtain a sequential decomposition of stochastic dynamic
games with asymmetric information. Such a decomposition is described by the following
result.

Result 3. SIB-PBE can be determined by the solution of N coupled dynamic programs
(one for each agent). These dynamic programs determine sequentially (moving backwards
in time) SIB-PBE via the solution (i.e. the Bayesian Nash equilibria) of a series of T
static Bayesian games that have the following form. For the game at time T , and for
any realization πt, s

i
T = (siT , i = 1, 2, . . . , N) of the SIB belief ΠT and the sufficient

information ST = (SiT , i = 1, 2, . . . , N), respectively, agent i’s utility is the expectation of
his original utility U iT (see Section 3) conditioned on the πT and sT . For the game at time
t, t = 1, 2, . . . , T − 1, and for any realization πt, st = (sit, i = 1, 2, . . . , N) of the SIB belief
Πt and the sufficient private information St = (Sit , i = 1, 2, . . . , N), respectively, agent i’s
utility is the sum of two terms: (i) the expectation of his original utility U it conditioned on
πt and st; and (ii) his expected payoff from time t+1 until time T, due to the continuation
of the game, conditioned on πt and st. The second term of the above sum is a function
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of the SIB belief Πt+1 (which, according to Section 5.2, is recursively determined form
πt and the new common information Zt+1 acquired at t + 1) and the sufficient private
information St+1 (which, according to Section 5.1, is recursively determined from st and
the new information the agents acquire at t+ 1).

Result 3 shows that for finite horizon stochastic dynamic games with asymmetric infor-
mation our approach resolves the difficulty due to the inter-dependence over time between
strategies and beliefs (discussed in Section 5.4) by providing a systematic method for de-
termining the components of SIB-PBE one at a time, starting at time T and sequentially
moving backwards in time. The N coupled dynamic programs provide an algorithm for
determining SIB-PBE.

Results 1 and 2 hold for both finite and infinite horizon games. Under certain additional
assumptions, Result 3 can be extended to infinite horizon games (see [36, 39]).

Result 4. (i) SIB-PBE exist for zero-sum games. (ii) For nonzero-sum games there
exists at least one SIB-PBE (σ∗, µψ), if the following condition is satisfied. There exists
sufficient information S1:N

1:T such that the update rule ψ is independent of the strategy
profile σ∗.

The independence condition of Result 4 is not satisfied for all cyber security games. In
[36] we present several classes of dynamic games with asymmetric information where the
condition of Result 4(ii) is satisfied.

We illustrate the results of our approach to stochastic dynamic games with asymmetric
information through the example introduced in Section 3.

An Example (continued)

For the example introduced in Section 3, at any time t the sufficient private information
of agent i in group 1 is Sit = Xi

t . As pointed out earlier, all agents in Group 2 have no private
information, thus, no sufficient private information. The sufficient common information
for all agents at time t is the belief on the system state Xt conditioned on the common
information Ct = A1:t−1, D1:t−1, Y1:t−1. Note that the sufficient private information of each
agent, and the sufficient common information for all agents have time invariant domains.

Using the sufficient common information as an information state, we can show [31, 30]
that PBE assessments can be determined sequentially in time by a backward induction
algorithm.

Therefore, for the game of the example introduced in Section 3, our methodology re-
solves the key difficulties (discussed in Section 4) that are associated with previous ap-
proaches to dynamic games with asymmetric information. That is, it breaks the interde-
pendence over time between strategies and beliefs (through the sequential decomposition
of the game) and discovers, for each agent and each time, sufficient private information
and sufficient common information that have time invariant domains.
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5.5 Discussion of the Main Results

Our main results show that the mutually consistent compression of the agents’ information
(private and common) leads to SIB strategies, SIB beliefs, and SIB-PBE which have several
desirable features. Specifically, SIB strategies are simpler than general strategies, and SIB
beliefs, which are common knowledge among all agents, can serve as information states in
the sequential decomposition of stochastic dynamic games with asymmetric information.
In general, the set of SIB-PBE of a dynamic game is a subset of all PBE of the game. This
is because in a dynamic game agents can incorporate their past irrelevant observations
into their future decisions so as to create rewards (respectively, punishments) that incen-
tivize them to play (respectively, not to play) specific actions over time. By compressing
the agents’ private and common information, we do not capture such punishment/reward
schemes that are based on past irrelevant observations. An example of such a situation
appears in [36, 39] within the context of a repeated game, where the set of PBE that can
not be captured as SIB-PBE are the ones that utilize payoff-irrelevant information to create
reward/punishment schemes in the continuation game.

We would like to note that in dynamic games where the agents’ equilibrium payoffs
are unique, we can restrict attention to SIB-PBE because the above-described punish-
ment/reward schemes do not lead to additional equilibrium payoffs. One class of such
games is the class of zero-sum games (e.g., attacker-defender games within the context of
cyber security where the defender’s only concern is the network’s security). In a zero-sum
game agents have completely opposite interests, therefore, it is not rational for them to
cooperate on the formation of such punishment/reward schemes; we refer the interested
reader to [36, 39] for more discussion and the proof of existence of SIB-PBEs in zero-sum
games.

Even though it is true that, in general, the set of PBE of a dynamic game is larger
than the set of SIB-PBE, in our opinion there are reasons on why in a highly dynamic
environments, such as the the environment of cyber security problems, SIB-PBE are more
plausible to arise as an outcome of the game.

First, we argue that in a highly dynamic environment with significant information
asymmetries among agents, the creation/formation of reward/punishment schemes that
utilize the agents’ payoff-irrelevant information requires prior complex agreements among
the agents. These complex agreements are more likely to occur in games where the un-
derlying system is not highly dynamic (as in repeated games [19]) and there is no much
information asymmetry among agents. In a highly dynamic environment with significant
information asymmetries among agents (as in cyber security games) the formation of such
complex agreements becomes less likely for the following reasons. First, in these environ-
ments each agent’s individual decision making process is described by a complex Partially
Observable Markov Decision Process (POMDP); thus, strategic agents are less likely to
form a prior common agreement (that depends on the solution of their POMDPs) in addi-
tion to solving their individual POMDPs. Second, as the information asymmetry among
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agents increases, reward/punishment schemes that utilize payoff-irrelevant information re-
quire an increasingly complex agreement that is sensitive and not robust to changes in
the assumptions on the information structure of the game. An example illustrating the
lack of robustness of these agreements to changes in the information structure of the game
is provided in [36, 39]. The author of [24] provides a general result on the robustness
of the above mentioned reward/punishment schemes in repeated games; he shows that
the set of equilibria that are robust to changes in the game’s information structure that
affect only payoff-irrelevant signals do not include the set of equilibria that utilize the
reward/punishment schemes described above.

Second, the proposed solution concept SIB-PBE can be viewed as a generalization/
extension of Markov Perfect Equilibrium (MPE) [21] to dynamic games with asymmetric
information. Therefore, a similar set of rationales that support the notion of MPE also
applies to the notion of SIB-PBE as follows. First, the the set of SIB assessments, as
presented in [36, 39], describes the simplest form of strategies capturing the agents’ behavior
that is consistent with the agents’ rationality. Second, the class of SIB-PBE captures
the idea that “bygones are bygones”, which also underlies the requirement of subgame
perfection in equilibrium concepts for dynamic games. That is, the agents’ strategies in two
continuation games that differ only in the agents’ information about payoff-irrelevant events
must be identical. Third, SIB assessments embody the principle that “minor changes in
the past should have minor effects”. This implies that any perturbation in the specification
of the game or in the agents’ past strategies that are irrelevant to the continuation game
should not change drastically the outcome of the continuation game.

We would like to emphasize that the key assumption of Section 5.4 is essential in es-
tablishing the assertions of the main results of the approach presented in this section.
Condition (C1) says that there is enough exogenous uncertainty (i.e random uncontrol-
lable events) in the system’s evolution so that at each time t all states in the system’s
state space can be reached with positive probability; condition (C2) says that no agent
can infer perfectly another agent’s actions based only on his private observations; equiv-
alently, condition (C2) says that any deviation that is detected by a certain agent is also
simultaneously detected by all the other agents. We believe that within the context of
cyber security problems these conditions are fairly reasonable. For example, when the
system/network is heavily used there is a high likelihood that random failures induced
by the heavy load can potentially lead to one of many security states. Furthermore, the
information agents receive from their own (private) sensors can be very noisy, thus they
are not able to perfectly detect other agents’ actions. Nevertheless, there are instances
of cyber security games with many players/agents (attackers and defendants) where an
agent’s deviation may be detected by a subset of the rest of the agents (this subset of
agents use their private information to detect the deviation). The methodology presented
in this section cannot address these instances. We present some ideas on how to address
these instances in Section 7.

Even though there are instances of dynamic games with asymmetric information where
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the domain of SIB strategies is time-invariant, e.g. [31, 37], the methodology for infor-
mation compression presented in this section does not always result in sufficient private
information the domain of which is time-invariant. Thus, our methodology does not com-
pletely resolve the difficulty arising from the growing domain of the agents’ strategies in
dynamic games with asymmetric information. In Section 7, we present some ideas on how
to address this difficulty.

We conclude our discussion by pointing out that the main results 1-3 can be obtained if
we replace the key assumption of Section 5.4 with another one where each agent’s actions
are always observable by all other agents. However, such an assumption is not realistic for
cyber security problems.

6 Relevant Literature

The literature on dynamic games with asymmetric information can be divided into two cat-
egories: (1) games where the underlying system is static (repeated games); and (2) games
where the underlying system is dynamic. There are significant philosophical differences
between the approaches to games in the above categories.

Dynamic games where the underlying system is static (repeated games) arise primarily
in economic problems where the environment does not change with time or evolves very
slowly over time. Works on (discounted) repeated games study primarily their asymp-
totic properties, specifically their properties when the horizon is infinite and agents are
sufficiently patient (that is the discount factor is close to 1). In repeated games agents
play a stage (static) game repeatedly over time. The main objectives of the literature on
these games are: (i) to analyze situations where the agents can form self-enforcing pun-
ishment/reward mechanisms so as to create additional equilibria that improve the payoffs
they obtain by playing an equilibrium of the stage game over time; and (ii) to characterize
the payoffs corresponding to all the equilibria of the repeated game.

Dynamic games where the underlying system is dynamic arise in engineering problems
where the environment evolves rapidly over time. For example, in cyber security, the pro-
gressive nature of cyber attacks results in a rapidly changing environment, this is why the
underlying system is modeled by a stochastic difference equation (see Section 3). The work
existing on games with asymmetric information where the underlying system is dynamic
does not restrict attention only to situations where the horizon is infinite and agents are
sufficiently patient. The literature addresses situations where the decision problem for
each agent, in the absence of interactions with other agents (i.e. assuming fixed strategies
for the other agents), is a POMDP. Therefore, the determination of a set of equilibrium
strategies is a complex problem. Consequently, it is unlikely that the agents seek equilib-
ria that result from the formation of self-enforcing punishment/reward mechanisms that
are similar to those used in infinitely repeated games. Existing approaches to and results
on dynamic games with asymmetric information where the underlying system is dynamic
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demonstrate that the equilibria of these games have the same features as the equilibria
determined by our approach (see Section 5.5). For this reason, in this section we will pro-
vide a detailed description of the literature on stochastic dynamic games with asymmetric
information where the underlying system is dynamic. At the end of the section we will
provide a few key references on dynamic games with asymmetric information where the
underlying system is static.

Stochastic dynamic games with asymmetric information where the underlying system
is dynamic can be classified into two categories, zero-sum and nonzero-sum. Cyber security
problems are usually modeled as non zero sum games because the attackers’ and defenders’
objectives are not exactly the opposite of each other (see Section 3). For this reason, first
we will briefly review the literature on zero-sum dynamic games and then we will provide
a more detailed discussion of the literature on non zero-sum games.

The works in [3, 10, 16, 17, 32] consider dynamic zero-sum games with asymmetric
information. The authors of [3, 32] study two-player games with Markovian dynamics and
lack of information on one side (that is, one player/agent who has perfect knowledge of
the game that is being played and one player who has partial/incomplete knowledge of
the game that is being played). The authors of [10, 16] study two-player zero-sum games
with Markovian dynamics and lack of information on both sides (that is, both players
possess only partial/incomplete knowledge of the game that is being played). We would
like to point out that the authors of [3, 10, 16, 32] consider models with specific Markovian
dynamics where each agent observes perfectly a local state that evolves independently of
all other local states conditioned on the agents’ observable actions. Thus, even if one
attempted to formulate cyber security games as dynamic zero-sum games with asymmetric
information, the results of the above mentioned papers could not provide any answers or
insights because in cyber security games the agents’ actions are not, in general, observable,
agents have imperfect (noisy) observations of the system’s/network’s security status, and
the game’s information structure (who knows what and when) is considerably more complex
than that of the above mentioned references. One instance of zero-sum stochastic dynamic
games where the agents’ actions are not observable is analyzed in [26]. The authors of
[26] consider zero-sum games with asymmetric information where the agents, in addition
to having private information, share, at each time instant, some common information, and
they play pure strategies. They prove that if the set of saddle point equilibria of the above
games is non-empty, then the (minmax) value of these games is the same as the value of
the (symmetric) games where the agents’ only information is their common information.
They provide an algorithm for determining the value of the symmetric information games.

The literature on stochastic dynamic non zero-sum games with asymmetric information,
where the underlying system is dynamic, addresses mostly situations where, in addition
to their private information, all agents have some common information (see [5, 12, 15, 27,
30, 31, 33, 35, 36, 37, 39, 40]). Refernces [5, 15, 35], consider infinite horizon discounted
games where the underlying system is a controlled Markov chain. The approach taken in
[5, 15, 35] is based on the philosophy and ideas used to analyze infinitely repeated games.
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In the work reported in [15] the system’s state is perfectly observed by all agents at all
times, and each agent’s actions are his private information (hidden actions); attention is
restricted to Perfect Pubic Equilibria (PPE), that is, equilibria that result in when agents
play only common information-based strategies. The authors of [15] characterize, under
certain assumptions that appear in [15], the set of the agents’ payoffs that correspond to
all PPE when all agents are sufficiently patient, that is, the discount factor δ approaches
1. The authors of [5] consider games where at each time all agents observe perfectly each
others’ actions but each agent has imperfect private information about the system’s state.
They consider PBE as a solution/equilibrium concept, and characterize, under certain
assumptions that are explicitly stated in [5], the set of the agents’ payoffs corresponding
to all PBE of the game when all agents are sufficiently patient. Sugaya [35] analyzes
instances of games where each agent has imperfect private information about the system’s
state and private monitoring of the other agents’ actions; furthermore, he assumes that
agents communicate with one another via perfect and public cheap talk. He adopts PBE
as the equilibrium/solution concept and characterizes, under certain assumptions that are
explicitly stated in [35], the agents’ payoffs that correspond to all PBEs of the game when
the agents are sufficiently patient. References [12, 27, 30, 31, 33, 36, 37, 39, 40] analyze finite
and/or infinite horizon discounted dynamic games. In all of these references, the agents’
common information is used as an instrument for coordination of the agents’ strategies. In
[12, 27, 30, 31, 33, 37, 40], the Common Information Based (CIB) belief (the belief on the
dynamic state state at time t, and all the agents’ private information at t, based on the
agents’ common information at t, t = 1, 2, . . . , T ) is an information state/sufficient statistic
for decision making for each agent at t. In [36, 38, 39] the SIB belief Πt, t = 1, 2, . . . , T ,
defined in Section 5.2, is an information state for decision making for each agent at time t.
In the game instances investigated in [12, 27] the CIB belief is independent of the agents’
strategies; in such a situation, assessments (defined in Section 5.4) can be described simply
by the agents’ strategy prediction (defined in Section 5.4), and an appropriate equilibrium
concept is Common Information Based Markov Perfect Equilibrium that was introduced
in [27]. In the game instances investigated in [30, 31, 33, 40], the CIB beliefs depend on
the agents’ strategies, the agents’ actions are always perfectly observable, and the agents’
(private) beliefs (defined in Section 5.4) are common knowledge ([1, 41]) among all agents.
An appropriate equilibrium concept for these instances of games is Common Information
Based-Perfect Bayesian Equilibrium (CIB-PBE) that was introduced in [30, 31]. In the
game instances investigated in [36, 37, 39] the agents’ SIB beliefs depend on their strategies,
the agents’ actions are not observable, and the agents’ (private) beliefs are their own private
information. An appropriate solution concept for these game instances is SIB-PBE that
was introduced in [36, 39] and presented in Section 5.3. Since cyber security games have
asymmetric information, unobservable actions, and the domain of the agents’ strategies’
grows with time, the work of [35] along with the methodology and results reported in
[36, 39] and informally presented in Section 5 is the literature that is the most relevant to
these games.
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Infinitely repeated games have been extensively studied, primarily by economists. There
is a rich literature available on these games; the book by Mailath and Samuelson,[19],
presents the main results on this topic until its publication date. In this chapter we briefly
discuss this literature, because some of the ideas and philosophy behind the development of
key results for this class of games played a significant role in the development of key results
for dynamic games with asymmetric information where the underlying system is dynamic
([5, 15, 35]). Infinitely repeated games can be divided into two categories, zero-sum and
non-zero sum.

Infinitely repeated zero-sum games with asymmetric (incomplete) information were
initially studied by Aumann et al. ([2]); an excellent survey and discussion of results on
this class of games can be found in [44].

Infinitely repeated non-zero sum games with asymmetric information can be classified
into three categories: games with perfect public monitoring, in which the agents observe
perfectly each others’ actions, and Nash equilibrium or perfect equilibrium as a solution
concept (see [20, 19] and references therein); games with imperfect public monitoring, in
which the agents can observe public noisy signals about the action profile and focus on
perfect equilibria where each agent’s continuation strategy depends only on past public
signals (see [8, 19] and references therein); and games with imperfect private monitoring,
in which players observe private noisy signals about other players’ actions, and sequential
equilibrium as a solution concept (see [22] for two-player games and [34] for many-player
games, and references therein). In all of the above categories the authors consider infinitely
repeated discounted games and characterize the set of equilibrium payoffs corresponding
to all equilibria in the limit as the discount factor approaches one.

7 Conclusion

We have argued that cyber security problems are stochastic dynamic games with asym-
metric information where the underlying system is stochastic and dynamic. We presented
current approaches to analyzing dynamic games with asymmetric information along with
the currently available literature and the challenges/difficulties associated with these ap-
proaches. As we pointed out in Section 4, two major difficulties are the interdependence
over time between strategy prediction and beliefs, and the increasing domain of the agents’
strategies. We presented a “sufficient information approach” (section 5) which breaks the
interdependence over time between strategy prediction and beliefs, leads to a sequential
decomposition of the dynamic game and specifies an algorithm for determining the SIB-
PBE of the game; we also identified instances of games where the sufficient information
approach results in a time-invariant domain of the agents’ strategies. The results of the
sufficient information approach were developed under a key assumption, stated in Section
5.4, which in essence says that any deviation by one agent is either not detected or it
is detected simultaneously by all other agents and the detection is based on the agents’
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common information.
In cyber security problems the domain of the agents’ strategies increases, in general,

with time. Furthermore, a deviation from one agent may not be detected at all, or it may
be detected at different times by different agents. These two features of cyber security
games cannot be captured by the approach presented in Section 5. In the rest of this
section we present some ideas on how to address them, and we identify open problems in
dynamic games with asymmetric information that are tightly connected to cyber security
games.

First, consider the situation where the agents’ sufficient private information increases
with time. In this case assume that each agent has finite memory which he updates at
each time instant; specifically, assume that at any time t part of each agent’s memory
is used to store his private information and another part is used to store his SIB belief
about the system state and all the agents’ (including himself) private information. At time
t+ 1, each agent’s private information is determined by an update rule which combines his
private information at t and the new information he receives at t + 1; similarly, the SIB
belief at time t + 1 is formed by an update rule which combines the SIB belief at t and
the new common information received at t + 1. Under these constraints, the objective is
to determine decision strategies (that are based on the agents’ private information and the
SIB belief), private information update rules, and common information update rules that
are in equilibrium.

Next, consider the situation where the key assumption of Section 5.4 is relaxed. In
this case the challenge is to create public monitoring structures/mechanisms that allow
each agent to detect deviations from other agents. Within the context of infinite horizon
discounted games (with discount factors close to 1) such monitoring structures are presented
(i) in [35] for games where the underlying system is dynamic and is described by a controlled
Markov chain, the agents’ actions are hidden (unobservable) and the agents’ private state
observations are imperfect (noisy), and (ii) in [34] for repeated games with an information
structure similar to that of [35]. These monitoring mechanisms are described by “review
phases” the duration of which is chosen appropriately so that at the end of each phase
the law of large numbers should hold with high probability, therefore, allowing agents to
detect each others’ deviations (see [34]). Such ingenious monitoring structures work well
for infinite horizon games but can not be used in finite horizon games. The discovery of
monitoring structures that allow agents to detect each others’ deviations in finite horizon
games where the key assumption of Section 5.4 is relaxed and the information structure is
similar to that of [35] is a challenging and important open problem that is closely connected
to cyber security games.

To alleviate the difficulties arising when the key assumption of Section 5.4 is relaxed
and public monitoring mechanisms are not in place we can focus on belief-free equilibria.
An equilibrium is belief-free if, after each history profile, each agent’s continuation strategy
is optimal independently of his beliefs’ of the other agents’ history profiles. Game theorists
have analyzed and solved repeated infinite horizon discounted games with private imperfect
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state information, observable actions, and belief-free equilibrium as the solution concept
(see [4, 13, 14, 43] and references therein). The analysis and solution of games where the
underlying system is dynamic, the agents’ private state observations are imperfect (noisy),
actions are hidden, and the solution concept is belief-free equilibrium, is an important class
of open problems. Such problems are tightly connected to cyber security as they capture
several important key features of cyber security games.

References

[1] R. Aumann. Agreeing to disagree. The annals of statistics, pages 1236–1239, 1976.

[2] R. Aumann, M. Maschler, and R. Stearns. Repeated games with incomplete informa-
tion. MIT press, 1995.

[3] P. Cardaliaguet, C. Rainer, D. Rosenberg, and N. Vieille. Markov games with fre-
quent actions and incomplete information-the limit case. Mathematics of Operations
Research, 41(1):49–71, 2015.

[4] J. Ely, J. Hörner, and W. Olszewski. Belief-free equilibria in repeated games. Econo-
metrica, 73(2):377–415, 2005.

[5] J. Escobar and J. Toikka. Efficiency in games with Markovian private information.
Econometrica, 81(5):1887–1934, 2013.

[6] D. Etherington and K. Conger. Large DDos attacks cause outages at twitter, spotify,
and other sites. TechCrunch. Np, 21, 2016.

[7] J. Finkle and D. Skariachan. Target cyber breach hits 40 million pay-
ment cards at holiday peak. accessed: 2016-09-09. [Online]. Available:
http://www.reuters.com/article/us-target-breach-idUSBRE9BH1GX20131219.

[8] D. Fudenberg, D. Levine, and E. Maskin. The folk theorem with imperfect public
information. Econometrica (1986-1998), 62(5):997, 1994.

[9] D. Fudenberg and J. Tirole. Game theory. Cambridge, Massachusetts, 393(12):80,
1991.

[10] F. Gensbittel and J. Renault. The value of Markov chain games with incomplete
information on both sides. Mathematics of Operations Research, 40(4):820–841, 2015.

[11] Andy Greenberg. Hackers remotely kill a jeep on the highway?with me in it. Wired.
accessed: 2016-12-15. [Online]. Available: https://www.wired.com/2015/07/hackers-
remotely-kill-jeep-highway.

24



[12] A. Gupta, A. Nayyar, C. Langbort, and T. Başar. Common information based Markov
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perfect equilibria for stochastic games with asymmetric information: Finite games.
IEEE Transactions on Automatic Control, 59(3):555–570, March 2014.

[28] Department of Homeland Security. Industrial control systems cyber emergency re-
sponse team (ICS-CERT). Available: https://ics-cert.us-cert.gov.

[29] M. Osborne and A. Rubinstein. A course in game theory. MIT press, 1994.

[30] Y. Ouyang, H. Tavafoghi, and D. Teneketzis. Dynamic oligopoly games with private
Markovian dynamics. In 54th IEEE Conference on Decision and Control (CDC), 2015.

[31] Y. Ouyang, H. Tavafoghi, and D. Teneketzis. Dynamic games with asymmetric in-
formation: Common information based perfect bayesian equilibria and sequential de-
composition. IEEE Transactions on Automatic Control, 62(1):222–237, 2017.

[32] J. Renault. The value of Markov chain games with lack of information on one side.
Mathematics of Operations Research, 31(3):490–512, 2006.

[33] A. Sinha and A. Anastasopoulos. Structured perfect Bayesian equilibrium in infinite
horizon dynamic games with asymmetric information. American Control Conference,
2016.

[34] T. Sugaya. Folk theorem in repeated games with private monitoring. working paper.

[35] T. Sugaya. Folk theorem in stochastic games with private state and private monitoring.
working paper.

[36] H. Tavafoghi. On design and analysis of cyber-physical systems with strategic agents.
PhD thesis, University of Michigan, 2017.

[37] H. Tavafoghi, Y. Ouyang, and D. Teneketzis. On stochastic dynamic games with
delayed sharing information structure. In Decision and Control (CDC), 2016 IEEE
55th Conference on, pages 7002–7009. IEEE, 2016.

[38] H. Tavafoghi, Y. Ouyang, and D. Teneketzis. A unified approach to dynamic decision
problems with asymmetric information-part i: Non-strategic agents. submitted to
IEEE Transactions on Automatic Control, available on arXiv:1812.01130, 2018.

[39] H. Tavafoghi, Y. Ouyang, and D. Teneketzis. A unified approach to dynamic decision
problems with asymmetric information-part ii: Strategic agents. submitted to IEEE
Transactions on Automatic Control, available on arXiv:1812.01132, 2018.

26



[40] D. Vasal and A. Anastasopoulos. Signaling equilibria for dynamic LQG games with
asymmetric information. In 55th IEEE Conference on Decision and Control (CDC),
pages 6901–6908. IEEE, 2016.

[41] RB Washburn and D Teneketzis. Asymptotic agreement among communicating de-
cisionmakers. Stochastics: An International Journal of Probability and Stochastic
Processes, 13(1-2):103–129, 1984.

[42] J. Watson. Perfect Bayesian equilibrium: general definitions and illustrations. working
paper, 2016.

[43] Y. Yamamoto. A limit characterization of belief-free equilibrium payoffs in repeated
games. Journal of Economic Theory, 144(2):802–824, 2009.

[44] S. Zamir. Repeated games of incomplete information: Zero-sum. Handbook of Game
Theory, 1:109–154, 1992.

27


