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Abstract: We consider the optimal scheduling of an infinite.capacity batch server in a N-node ring 
queueing network, where the controller observes only the length of the queue at which the server 
is located. For a cost criterion that includes linear holding costs, fixed dispatching costs, and 
linear service rewards, we prove optimality and monotonicity of threshold scheduling policies. 

1 Introduction 

Large-scale networks such as high-speed communication networks, manu- 
facturing systems, polling systems, and transportation systems are often charac- 
terized by workstations that act individually, each possessing an accurate per- 
ception (perfect knowledge) of its immediate environment but only imperfect 
knowledge of the overall state of the network. Even when information can be 
exchanged among stations, there are propagation and processing delays that 
may render such information partially obsolete; moreover, faults and transmis- 
sion errors may render the data inaccurate. The optimization problem can thus 
be expressed as follows: based on partial knowledge of the system state, how 
should the individual workstations operate so as to maximize some measure of 
the overall utility for the entire system? While we cannot expect to obtain 
universal results of that nature, it is possible to isolate certain network aspects 
for analysis and to formulate optimization problems based on incomplete 
knowledge of the state. The problem formulated in this paper is motivated by 
a number of systems including information systems, polling systems, shuttle 
systems, and automated guided vehicle (AGV) systems with stations arranged in 
a ring. 

Consider a distributed information system with a central database containing 
information that is generated at various stations. Jobs, that may represent 
orders or other changes in state that must be tracked, arrive randomly at each 
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station. The server at the central facility controls the times at which it polls or 
monitors the stations, but it polls them in a fixed, cyclic order. The time required 
to poll a station is brief and insensitive to the number of jobs waiting at the 
station. Thus, service can be modeled by a batch-service mechanism. Holding 
costs per job are incurred to provide an incentive to serve jobs promptly and 
thereby maintain an accurate perception of the system. On the other hand, a 
service fee (penalty) is incurred for the server to connect to a station and serve 
the jobs there. For  generality, a reward earned per job served is also included. 
The server's objective is to maintain a appropriately up-to-date database for the 
system, while polling the stations infrequently as appropriate to keep overhead 
cost tow (and to be available for other unmodeled tasks). The server has perfect 
memory but observes at any instant of time only the number of jobs at the node 
that is being polled. 

Consider next an automated guided vehicle (AGV) or a shuttle in a manu- 
facturing or transportation system. The shuttle transports jobs from one station 
to the next in a cyclic queueing system. There is no exchange of information 
amongst the queues. At each instant the shuttle must choose either to dispatch 
the jobs at the present queue or to wait at the present queue for more jobs to 
arrive at the system. There is a holding cost per unit time for each job in 
the system, a reward earned for each job that is served, and a switching cost 
describing the overhead required to serve a queue and switch to the next. The 
shuttle (or AGV) can transport all the jobs at a queue to the next node in one 
unit of time. At each time instant the shuttle knows perfectly the number of jobs 
in the node where it is waiting and has perfect memory. 

A mathematical model and the optimization problem for the systems de- 
scribed above are the following: In discrete time, an infinite capacity batch server 
visits N queues, each with an i.i.d, arrival process, in a prespecified order. When 
queue n is the next to be served, the server observes the queue length at n and 
knows the elapsed time since each of the other queues was last visited. The server 
can process (dispatch) all the jobs at a queue in one unit of time or wait one or 
more units of time before serving queue n. Each job has a holding cost per unit 
time and a reward associated with its completion. A one-unit service time is 
required to serve the jobs at a queue, and a switching cost is incurred each time 
the server completes the service of a queue and moves to the next. The batch 
server controls the service times based on the available information. The objec- 
tive is to characterize a server dispatching policy that is a function of the 
available information and minimizes an expected discounted cost due to waiting 
jobs and the dispatching of the server. 

In the case of the information system, the above model allows the server to 
monitor the current queue length as it waits to serve that queue. In the case of 
the shuttle system, modeling of realistic systems becomes difficult quickly. The 
above model assumes that all jobs served at queue n are transported to the next 
node in the service order (n @ 1) and leave the system at node n O 1, that 
the shuttle has infinite capacity, and that the arrival process is memoryless. In 
some applications, the arrival process may be significantly correlated with the 
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batch service process and jobs in node n may have destinations other than node 
n | 1. 

The above model is related to literature where the server is a shuttle serving 
one or more terminals. An early treatment of batch service control subject to 
partial information is found in Ignall and Kolesar [11]. They formulated a 
two-node shuttle dispatching problem in which the shuttle carries only a single 
customer, observes only the number of customers at its location, and bases its 
dispatching decisions only on the queue length of the node where it is located. 
No attempt was made in [11] to utilize the inferential information about the 
unobserved terminal. Deb [-9] was the first to provide a thorough characteriza- 
tion of an optimal scheduling policy in a two queue system with control at both 
nodes and perfect information (i.e. the lengths of both queues are known to the 
controller at all times). In Van Oyen and Teneketzis [-24], we investigated in 
discrete time a two queue system where queue length information is exchanged 
between the nodes subject to a propagation delay. At a given terminal at any 
time t, the controller's (shuttle dispatcher's) decisions are based on the following 
information: (1) the shuttle's location at time t (referred to as the present node 
at t), (2) the queue length of the present node at time t, and (3) a delayed 
observation of the queue length at the other node at time t - I, where I is a 
nonnegative integer. Under the assumption that shuttle trip lengths exceed the 
information delay I, we proved that a threshold type policy is optimal: dispatch 
the shuttle from node n, n E {1, 2}, if and only if the queue length at node n 
exceeds 0", a threshold which is a function of the most recent delayed observa- 
tion of node m ~ n. The threshold functions 01 and 0 z are monotone non- 
increasing functions of the. delayed observation. In addition, in [24] we derived 
additional conditions for dispatching which further reduce the computational 
effort required to obtain an optimal threshold policy. Whereas [9] and [24] 
allowed a general finite capacity batch server, the infinite capacity assumption 
is shared by a number of previous analyses. A theory for the optimal static 
control of single-station, infinite-capacity service systems is developed by 
Stidham [22]. Lee [14] addressed a two node network with imperfect informa- 
tion such as defined in [-11], under the assumptions of an infinite capacity 
shuttle and compound batch arrival processes. As in [11], the ad hoc policy 
considered by Lee did not utilize inferential information regarding the state of 
the entire network. The issue of partial information was further discussed in 
Ignall and Kolesar [-12], where the problem was simplified as follows: the 
controller observes only one terminal and no control decisions are exercised at 
the unobserved terminal (dispatching of the server is automatic upon its arrival 
at the unobserved terminal). In addition, the batch service capacity was assumed 
infinite. Ignall and Kolesar did not achieve any characterization of optimal 
policies for this problem. 

To the best of our knowledge, the present paper is the first to present qualita- 
tive properties of optimal dynamic control policies for ring-type networks with 
an infinite capacity batch server under conditions of imperfect information. 
Through appropriate choice of an information state, we show that the dynamic 
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programming methodology which proved effective in Deb [9] and Van Oyen 
and Teneketzis 1-24] can be extended to ring-type queueing networks with an 
infinite capacity server and the additional feature of service rewards under 
conditions of imperfect information. Our  contribution lies in developing a 
framework in which the problem can be analyzed. We determine properties 
of optimal policies that can be used to reduce the computational  effort required 
to numerically determine an optimal policy. Furthermore, we provide deeper 
insight into the issues contained in such scheduling problems with imperfect 
information and can form a basis for approaching more realistic models in a 
variety of applications. 

The remainder of the paper is organized as follows. We precisely formulate 
our model in Section 2. In Section 3 we characterize an optimal finite-horizon 
scheduling policy as a threshold-type policy, where the threshold functions are 
monotone functions of the available observations. We extend the analysis to the 
infinite-horizon criterion in Section 4. Conclusions are presented in Section 5, 
and suggestions for further research are made in Section 6. 

2 Problem Formulation 

We consider the following system in discrete time. A single infinite capacity 
server provides service according to a predetermined route (or service order) in 
a network with N > 2 nodes. Since the route is fixed, we assume that the nodes 
are labeled 0, 1, 2 . . . . .  N -  1 and form a ring such that when the server 
completes service at node n it goes to node n G 1, where G indicates addition 
modulo N. We assume that tasks (jobs, customers) arrive at each node ac- 
cording to an independent and identically distributed (i.i.d.) sequence of batch 
sizes, and that the arrival processes are independent of everything else. We 
denote by a, -~ (a,(0), a,(1) . . . . .  a.(M)), M ~ 7/+, (where Z + denotes the non- 
negative integers) the probability vector governing the number of arrivals to 
node n at time t. The server exercises the following control actions: If at time t 
the server is at node n it has two options: (1) wait at node n (Ut = 0) until t + 1 
when a new decision has to be made; or (2) serve all the tasks waiting at node n 
(including potential arrivals at t) and move to node n • 1 (U t = 1). We assume 
that if Ut = 1, the server takes one unit of time to serve all the tasks at node n 
and "moves" to queue n | 1. For  each unit of time a task waits at node n, a 
holding cost of c, units is incurred, where c. > 0. In addition, a switching/ 
dispatching cost K,  (K, > 0) is incurred upon each move/dispatch of the server 
from node n. On the other hand, a service reward of S, (S, > 0) is received for 
each task served at node n. The server's decision at time t is based on all the 
observations available up to t and all the decisions (control actions) made up to 
t - 1. The server has imperfect information of the system state. If at time t the 
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server is at node n, it observes only the number of tasks waiting for service at n 
(including any arrivals at t); furthermore, at t the server has a probability 
distribution on the number of tasks waiting at other nodes since it knows the 
number of time units, era, that have elapsed since node n O m was last cleared (Q 
denotes subtraction mod N). 

Based on the above assumptions, the objective is to determine a non- 
anticipative policy 9" that maximizes the total expected discounted reward 
earned over a horizon T ~ 7/+ w {oo} due to service rewards, switching costs and 
holding costs. Let Xn(t ) be the queue length of node n at time t, m(t) be the 
location of the server at t, and ~ (s) denote the indicator function of event s. 
The server's information state at t can be represented by the vector (e, x, n) = 
(el, e2 , . . . ,  e~-l ,  x, n) where: the last component, n, indicates that the location of 
the server at t, x denotes the number of tasks present in node n at t, and 
e g (el,e2, . . . ,eN-1) denotes the number of time units since the server last 
moved from nodes n O 1, n O 2, . . . ,  n �9 1 respectively (since n O (N - 1) = 
n O 1). Note that: (1) e and z define quantities relative to the present location n, 
and (2) because the server requires one unit of time to serve all the tasks in one 
node and to move to the next node, we have el _> 1 and ei+l > 1 for i = 1, 2, . . . ,  
N - 1. Thus, the information state is an element of the following space: 5e =a 
{(e, x, n) e (7/+)N-~ x (7/+) x {0, 1 . . . . .  N -- 1}: i __ ei --< e~+l -- 1 for i = 1, 2 . . . . .  
N -- 1}. Let O be an admissible policy of the server, and let (e, x, n) e 5e be the 
initial state. Then, the total expected discounted reward over a horizon T using 
9 is given by 

{t=~ ~ N-1 r / 7t 
Igor(e, x, n) = E o • [ -c , ,X, , ( t )~(U,  = O) 

nl=O 

-- CmXm(t)~ (U, = 1, n(t) • m) 

+ (S , X , ( t )  - K,,)I (V, = 1, n(t) = m)] I(e, x, n)~ 
J 

(2.1) 

where 0 < fl < 1 is the discount factor and Eg denotes the expectation under g. 
Let G be the set of admissible policies. As stated above, the objective is to 
determine infg ~ a Wgr(e, x, n) for any T, (e, x, n). Without any loss of optimality, 
we restrict attention to the class of policies which are functions of the informa- 
tion state (e, x, n) (see Chapter 6 of Kumar  and Varaiya [13]). We begin with the 
finite horizon problem, and we extend our analysis to the infinite horizon 
problem afterwards. 

3 The Finite Horizon Problem 

We analyze the finite horizon ease (T < ~ )  of the problem formulated in Section 
2 using stochastic dynamic programming. Assume 0 </7 _< 1, where/7 is fixed. 
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Let Vt(e, x, n) denote  the maximum expected fl-discounted reward-to-go from 
time t through T condit ioned on the information state (e, x, n) at t. The opti- 
mality equat ion is 

Vale, x, n) = max[hi(e, x, n), dr(e, x, n)] , (3.1) 

where ht(e, x, n) (dr(e, x, n)) is the maximum expected discounted reward-to-go 
from time t through T condit ioned on state (e, x, n) and the decision to hold 
(dispatch) at t. Let  Xg(t) (Xi(t)) denote the queue length of node i immediately 
prior  to (respectively, following) the application of Ut. The functions ht and d~ are 
given by 

hT+~(', ', " ) = ~ 0 ,  (3.2) 

hde, x , n ) = E { - i ~ = l c i X i ( t ) +  

flVt+l(1 + el,  1 + e 2 . . . .  ,1  + eN-1, X,( t  + 1), n)] U, = 0, 

X,(t) = x, X~el(t - et) = 0, I = 1, 2, . . . ,  N - 1} (3.3) 

dT+ 1( ' ,  ", ") ~= 0 , (3.4) 

d t ( e , x , n ) = S . x - K ~ - 4 - E { - i ~ = x C . e i X . e ~ ( t ) +  

fiVt+l(1, 1 + el, 1 + e 2 . . . . .  1 + eN_2, Xn~l(t + 1) ,n@ 1)IG = 1, 

Sn@l(t -- el) = 0, 1 = 1, 2 , . . . ,  N - 1} . (3.5) 

m 

Note  that  in (3.3) and (3.5), X,  el(t - el) = 0 to indicate a dispatch from n O 1 at 
time t - e l. 

To avoid nonessential difficulties that may  be int roduced by a transient period 
in the evolution of the information state, we assume that  at time t = 0 operat ion 
of the server is in steady state with respect to the available information. That  is, 
we assume that  the arrival process is defined for times indexed by { . . . ,  - 2 ,  

- 1, 0, 1, 2 . . . .  } and consider any initial state in 6e at t = 0. Let  A~' denote the 
probabil i ty vector on the number  of arrivals to node j in e~ units of time (that is, 

ei the e/-fold convolut ion of a~). Thus, for 'k  e {0, 1 . . . .  , Mei}, A,•i(k ) denotes the 
probabil i ty that  X,  edt ) = k given that  node n was cleared at t - e~. Letting 
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Ctj denote  the mean  of aj (equivalently A)), we find that  in the above  case, 
E { X ,  ei(t)} = ct,ele i. We also find it convenient  to define the opera tors  H(e) and 
D(e) to denote  the evolut ion of e during holding and dispatching respectively. 
Fo r  e = (el, e2, . . . ,  eN-1), let 

H(e) ~= (1 + el ,  1 + e 2 . . . . .  1 + eN-1) , (3.6) 

D(e) ~- (1, 1 + el,  1 + e2 , . . .  , 1 + eN_2) . (3.7) 

We are now able to write (3.3) and (3.5) more  explicitly as 

N - 1  

ht(e, x, n) = - c . x  - ~ c ,o ie ,e ie  i 
/=1 

M 

+ ~, Aa,(k)flVt+l(H(e), x + k, n) , (3.8) 
k = 0  

N - 1  

dr(e, x, n) = S , x  - K ,  - ~, c ,o ie ,e ie  i 
i=1  

M(I  +eN-I) 
l+eN 1 A , ~ I  (k)flVt+l(O(e), k, n O) 1) . (3.9) + 

/ . . . . . d  

k = 0  

Our  analysis rests on the propert ies  of the "derivatives" of  V, ht, and d t with 
respect to var ious componen t s  of  the informat ion  state. Let  6( j)  denote  a N - 1 
element vector  with a 1 in the j t h  element and zeros elsewhere. We define for 
j e {1, 2, . . . ,  N - 1}, (e, x, n) e 5 e, and (e + 6(j) ,  x,  n) ~ 5e 

AjVt(e, x, n) = Vt(e + 6( j ) ,  x, n) - Vt(e, x, n) , (3.10) 

AN Vt(e, x, n) = Vt(e, x + 1, n) -- Vt(e, x, n) ; (3.11) 

Ah, Ad  are defined similarly. These differences have clear interpretat ions.  Fo r  
example,  i f N  - 1 > 2, AEdt(e , x, n) denotes the incremental  expected discounted 
reward to go (given the decision to dispatch at t) that  is associated with an 
addi t ional  unit  of  elapsed t ime since the server was last dispatched f rom node  
n (~ 2. No te  that  this implies a compar i son  of different control  sequence 
histories. Because we focus on characterizing the dispatching decision faced at  
any given node, it suffices to investigate the relat ionships a m o n g  the functions 
V, h, and d for any two states (e 1, x 1, n) ~ 50 and (e 2, x 2, n) 6 ,~# at any given t ime 
t. The  difference between any two such states can be writ ten as a telescoping 
sum of single-unit incremental  state changes. Thus,  our  analysis defines struc- 
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tural properties (over the state space ~ )  of  the marginal revenue functions 
(3.10), (3.11), and their Ah, Ad counterparts.  Using (3.2), (3.4), (3.8), and (3.9)we 
find that for t c  {1, 2 . . . . .  T } , i e  {t, 2 . . . . .  N -  1} , j~  {1,2 . . . . .  N -  2 } , a n d m ~  
{i, 2 , . . . ,  N} 

A~hT+I(', ', ') = 0 

ztmdr+l(', ', ") = 0 

M 

A,ht(e, x, n) = -c~,e~c,~ + ~ A~(lOflAft+l(H(e), x + k, n) , 
k = O  

M 

A~vhde, x, n) = --c ,  + ~ A~,(k)flA~c~+t(H(e), x + k, n) , 
k=O 

dflt(e, x, n) = - ~ , e j c , e j  + 
M ( l + e N - 1 )  

E Al+eN_ffb ~ *nq)l v'q 
k=O 

�9 fiA~+ I Vt+l(D(e), k, n �9 1) 

&~_fl,(e, x, n) = - ~ . |  + 
M(1 +eN-1) 

E Al,+e~c_l(b~ *n@l V ~1 
k=O 

- fiVt+~(D(e), k, n if# 1) 1 

M(1 +ere-l)  

= ~ 0~n~lCn~)l  + E ~C~tn@lAl+eN~tgb~k ~'1 
k = 0  

" ] 
�9 A ~ l ( I  ) ~ fiztNVt+i(D(e), k + m, n if) 1) , 

/=O m=O 

AN~t,(e, x ,  n) = S .  , 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.t8) 

(3.19) 

where it is assumed in (3.14) that  (e + 6(0, x, n )e  5 a and in (3.16) that 
(e + ~(j), x, n) e ,Y. 

Our  derivation of threshold and monotonici ty  results rests on two basic 
results, which we quote. 

RI: Let h(a + I), h(a), d(a + 1), d(a) ~ N, and V(.) g max(h(.),  d(')). If 
h(a + 1) - h(a) <_ d(a + 1) - d(a), then 

h(a + 1) - h(a) < V(a + 1) - V(a) < d(a + 1) -- d(a) . 
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R2: Let h and d be functions mapping 77 + x 77+ to ~ and define V(a, b ) =  
max(h(a, b), d(a, b)) for any  (a, b) �9 77+ x 77+. Define Alh(a, b) = h(a + 1, b) - 
h(a, b) and A id(a, b) similarly. If the following properties hold for all a, b �9 ?7+: 

(i) Ath(a , b + 1) _> Alh(a , b) 
(ii) Aid(a, b + 1) > Ald(a , b) 

(iii) zlld(a, b) >_ Alh(a, b) 
(iv) d(a, b + 1) - d(a, b) > h(a, b + 1) - h(a, b); 

then A1V(a, b + 1) > A1V(a, b) for all a, b �9 77 +. 
Both R1 and R2 follow directly from Lemmas 2.2 and 2.3, respectively, of Van 

Oyen and Teneketzis [24]. Result R2 presents a sufficient condition for the 
maximum of two supermodular functions to be supermodular. 

We now present Lemma 1, which reveals both the optimality of a threshold- 
type batch service policy as well as the monotonicity of the threshold functions. 

Lemma 1: For any t �9 {0, 1 . . . . .  T}, (e, x, n) �9 5 e, and k, j �9 {1, 2 . . . . .  N - 1} 
such that k r j: 

(i) ANdt(e, x, n) >_ ANVt(e, x, n) > ANht(e, x, n), 
(ii) Ajdt(e, x, n) > AiV~(e, x, n) > Ajht(e, x, n), 

and the following supermodularity relations hold for the value function: 

(iii) Aj Vt(e, x + 1, n) > Aj Vt(e, x, n), 
(iv) AjV~(e + 6(k), x, n) > AjVt(e, x, n), 
(v) ANV~(e + 6(j), x, n) > ANV~(e, x, n). 

It is assumed in (ii), (iii), (iv), and (v) that e is such that ej < ej+l - 2 so A~dt can 
be defined. 

Proof: The proof proceeds by induction. The basis for induction (t = T) is 
established as follows. Since ANdT(e, x, n) = S, >_ -- c, = ANhT(e, x, n), (i) follows 
from R1. Similarly, AflT(e, x, n) = --ct,eje,e j = AjhT(e, x, n) and R1 yields (ii). 
We prove (iii) by using R2 as follows. First note that A~hr and AflT are constant 
in x; thus conditions R2(i) and R2(ii) are satisfied. The remaining conditions of 
R2, namely R2(iii) and R2(iv), are justified by Lemma l(ii) and Lemma 1(i) 
respectively at T. Similar arguments using R2 justify properties (iv) and (v) of 
Lemma 1 at T. 

Assume that the result holds at times t + 1, t + 2 . . . . .  T. We proceed to 
complete the induction step. As will be seen, the proof of (i) and (ii) must precede 
the others. The proofs of (iii), (iv), and (v) are all similar and rest on R2. 
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Proof  o f  ( i):  We demonstrate that ANdr(e, x, n) > ANht(e, x, n), then provide the 
justification for each step. 

ANht(e, x, n) = - c ,  + ~ A~(k)BANVt+I(H(e ), x + k, n) 
k 

< --c,, + ~ A~(k)~ANdt+l(H(e ), x + k, n) 
k 

= - c . +  13s. 

< Audt(e, x, n) . 

(3.20) 

(3.21) 

We begin using (3.15) in the first step and justify (3.20) by (i) of the induction 
hypothesis. Equation (3.21) follows by (3.19) and we conclude using (3.19) and 
the assumptions cN > O, fl < 1. 

Proof  o f  (ii): We first prove the result when j r N - 1 (equivalently n @ 
(N - 1) r n G 1), then the casej  = N - 1. 

Case I: Suppose j r N - 1. 

A]dt(e, x, n) = -e,,ojC,,ej + ~ *+ . . . .  A,,el (k)flAj+ig+~(D(e), k, n �9 1) 
k 

~>-- --O~nojCnoj "~- ~k "'nG1A l +eu-ltb'~Rt'~H '' I--O~(n+I)G(j+I)C(n+I)@(j+I) 

+ ~t A~e~(l)flA~+lVt+2(H(D(e))' k + l, n @ 1)] (3.22) 

= -- O~nojCnGj Jr fl I -- O~nOjCnGJ 

"~ Zm AZ"e~"-'(m)flAJ+~ Vt+ 2(H(D(e))' m, n G 1) 1 (3.23) 

2> -- CgnojCno j + fl I -- Cgn(~jCnGj 

A m A V D H e  , m ,e~ - (  )/~ J+~ t+z( ( ( ) )  m , n @ l )  (3.24) 
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= -~nejCnej -t- fl [~k A in(k)zijdt+i (H(e), x -l- k, n) ] 

> -C(~ejC,e j + ~ Aln(k)flA~V,(n(e), x + k, n) 
k 

= Ajh,(e, x, n) . 

411 

(3.25) 

(3.26) 

The first step simply restates (3.16). Equation (3.22) follows from (ii) of the 
induction hypothesis (Aj+l Vt+l > A i + l h , )  and (3.14). We rewrite the expecta- 
tion to get (3.23). Noting that n(D(e)) = D(H(e)) + 6(I), we get (3.24) by (iv) 
(convexity with respect to e~ is not required since j + 1 > 2 under the assump- 
tion of Case 1). Equation (3.25) follows from (3.16). We use (ii) of the induction 
hypothesis to justify (3.26) and conclude using (3.14). 

Case 2: Suppose j = N - 1. 

AN_ida(e, x, n) = - a , ~ l c ,  e 1 + ~ "*n(91Al+ . . . .  i,~.![bt 
k 

[Z " 1 �9 A~,~(l) X #,4~g§ k + m, n | 1) 
m=O 

m=0 
(3.27) 

" ( - c n e l  + ~ A~et(P)flAuV*+2(H(D(e))'k + m + p ' n @  

--~> --O~n@lCn(~l + ~ ( -O~n(~lcn@l -}- ~i ~Ln@lA2+e~-l(;~"~! 

,1 ) 
�9 ~ Ain~i(1) ~ flANVt+2(D(H(e)), m + i, n @ 1) 

m=O 
(3.28) 

= - ~ , e i c , ~ l  + ~ A~(k)flAN_ldt+~(H(e ), x + k, n) (3.29) 
k 

>_ AN_iht(e, x, n) . (3.30) 

We begin by stating (3.18) and noting n @ (N - 1) = n | 1. We get (3.27) by 
using (i) of the induction hypothesis (A N V~+ 1 >_ ANh,+ ~) and then applying (3.15). 
In addition to simplifying terms, we use (v) of the induction hypothesis (since 
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H(D(e)) = D(H(e)) + 6(1)) to justify the inequality of (3.28). We use (3.18) to get 
(3.29) (where the expectation with respect to A, ~ and the argument x + k are 
both superfluous). Equation (3.30) follows by (ii) of the induction hypothesis and 
(3.14). 

Proof of (iii): We prove (iii) using R2. We begin by proving the supermodularity 
of ht and dr. Using (iii) of the induction hypothesis we get 

Ajht(e, x + 1, n) = -o~,,e;c,,ej + ~ A~(k)flAiVt+l(H(e), x + k + 1, n) 
k 

>_ --~z,,ejc,,ej + ~ At~(k)flAjVt+l(H(e), x + k, n) 
k 

= Ajhr(e, x, n) . 

The supermodularity of dr is trivial. If j  ~ N - 1, (3.16) shows Aj , (e ,  x + 1, n) = 
Ajdt(e, x, n); otherwise (3.18)justifies this conclusion i f j  = N - 1. 

Thus, conditions R2(i) and R2(ii) hold. Conditions R2(iii) and R2(iv) hold by 
properties (ii) and (i), respectively, of Lemma 1 at time t. Consequently, by R2, 
~V,(e, x + 1, .) _> ~iV,(e, x, .). 

Proof of (iv)." We use R2 to prove that (iv) is valid at t. Property (iv) of the 
induction hypothesis yields the supermodularity of h r We prove the super- 
modularity of d r using three cases. First, suppose j # N - 1, k # N - 1. 

Ajdt(e + 6(k), x, n) 

: --O~n@jCn@j -[- 2 l + e N - t  An.~ (1)flAj+lV,+~(D(e + 6(k)), l, n G 1) 
l 

> --O~n@jCn@j + 2 l + e N  t 
_ A.el  (1)~3j+iV,+l(D(e), 1, n @ 1) 

l 

= A;dt(e, x, n) . 

The inequality follows from (iv) at t + 1 since D(e + 6(k)) = D(e) + 6(k + 1) and 
j # k .  

Second, suppose j ~ N - 1, k = N 1. 

Ajdt(e + 3(N - 1), x, n) 

= --(Zn@jCn@j Jr 2 Al+eN-l{l~ "*,,el toJ ~, A~.l(m)fidj+aVt+l(D(e), l + m, n �9 1) 
l m 
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1 + e ~ -  1 >_ -~ ._ i c . _ j  + ~ A . e  1 (1)flAj+lV,+l(O(e), l, n @ 1) 
l 

= x ,  n ) .  

Here we have used the fact that D(e + 6(N - 1)) = D(e) and justified the in- 
equality by (iii) of the induction hypothesis. 

The final case, j = N - 1, k ~ N -- 1, follows similarly from (3.18) and (v) of 
the induction hypothesis. 

Thus, we have established R2(i) and R2(ii). Both R2(iii) and R2(iv) hold by (ii) 
of Lemma 1 at t. Part (iv) then follows from result R2. 

Proof  o f  (v):  The supermodularity of h t follows from (v) of the induction 
hypothesis. The supermodularity of d~ follows from ANd~(e + 6(j),  x, n) = SN = 
ANdt(e, x, n). Result R2 yields the supermodularity of V,, since R2(iii) and R2(iv) 
follow from properties (i) and (ii) of Lemma 1, respectively, which have already 
been established at t. [] 

Statements (i) and (ii) of Lemma 1 define the structural properties of an 
optimal service policy. Specifically, if it is optimal to dispatch the server at state 
(e, x, n) at t, (i) indicates that dispatching is also optimal at state (e, x', n), where 
x ' >  x, since dispatching results in a greater incremental reward than does 
holding. Similarly, (ii) indicates that the incentive to dispatch is increasing in ej, 
the time elapsed since node n O j  was last cleared. We proceed to state these 
implications precisely in the main result, Theorem 1. Since the result follows 
directly from Lemma t, we omit a formal proof. 

Theorem 1: For t, e e (Z+) N-l, x e 7/+, n e {0, 1 . . . .  , N - 1} there exists a thresh- 
old function, 07, defined by 

0t"(el, e2, . . . ,  eN-1) 

=~ inf{z e 7/+: dr(el, e2 . . . .  , eN-1, z, n) > ht(el, e2 . . . .  , eN-1, z, n)} , (3.31) 

such that the following service policy is optimal: if at t the state is (e, x, n), 

clear node n if and only if x > 0t"(el, e2, . . . ,  eN-1) �9 (3.32) 

Moreover, for a n y j  ~ {1, 2 . . . . .  N - 1} such that (e + 6(j), x, n) ~ 5 e, 

0t"(et, e2 . . . . .  eN-1) > 0~"(ea, e2 . . . . .  ej-1, ej + 1, ej+l . . . . .  eN-1) �9 (3.33) 
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Remark: We refer to (3.32) as the threshold property and to (3.33) as the mono- 
tonicity of the threshold functions. 

As we have shown, the threshold and monotonicity properties rest on the 
underlying supermodularity of the value function. This was also the case in [243, 
the two node problem with a finite-capacity server and delayed information. 
Unlike that problem, however, the infinite batch-service capacity assumed here 
results in a value function which is convex. This is shown in the following 
theorem. 

Theorem 2: For any t ~ {0, 1, . . . ,  T}, (e, x, n) e 5 ~, and k, j E {1, 2, . . . ,  N - 1} 
such that k # j the following convexity relations hold for the value function: 

(i) AsVt(e, x + 1, n) > ANVt(e , x, n), 
(ii) AjVt(e + 6(j), x, n) > AjVt(e, x, n). 

Proof." The theorem holds trivially at T, (see (3.12) and (3.13)) and the induction 
steps follow. 

Proof of (i): We begin by demonstrating the convexity of d~ and ht in x. That d t 
is convex in x is obvious from (3.19). On the other hand, since V~+I is convex in 
x ((i) of the induction hypothesis) it is clear from (3.8) that h, is convex in x. Since 
the maximum of two convex functions is convex, (i) holds at t. 

Proof of (ii): The proof is similar to that of (i). This convexity property in ej can 
easily be established for h t using (3.14) and (ii) of the induction hypothesis. The 
convexity of d, requires two cases. The first case, j = N - 1, is as follows: 

AN-ldt(e -'}- (~(N - 1 ) ,  x, n) = -O~n@lCn@l "~- k~ AI+'~nG1 .... t,}ltb~I~ Alnel(p) 

l_1 ] 
- ~  A~ea(/) ~ flANVt+~(D(e), k + p + l, n �9 1) 

I m = O  

k 

�9 A~I(1)  ~ f lANVt+l(D(e),k+l,  n G 1 )  
m=O 

= AN_ldt(e, x, n) . 
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We have used D(e, 6(N - 1)) = D(e) and have justified the inequality by (i) of the 
induction hypothesis. 

The remaining case, j r N - 1, is similar and can be shown using (3.16) and 
(ii) of the induction hypothesis. [] 

Properties of the value function such as convexity and supermodularity may 
be useful in reducing the computational effort required to determine an optimal 
policy. 

4 The Infinite Horizon Problem 

We use the technique of value iteration (or successive approximation) to extend 
the results of Section 3 to the case of an infinite planning horizon: T = oe. We 
assume the discount factor is fixed and/3 < 1. We show that the value function 
of the T-stage problem converges to the infinite horizon value function as 
T ~ ~ .  Using this, we prove that an optimal infinite horizon policy is pure 
Markov, stationary, and inherits the threshold and monotonicity properties 
stated in Theorem 1 for the finite horizon case. 

From (2.1) it is clear that War(e, x, n) is finite (although unbounded in the state) 
for any T < oe. We proceed to show that Wad(e, x, n) is finite. 

Lemma 2: For any initial state (e,x,n) ~ 5" and any g e G, [ Wa~~ x, n)[ < oo. 

Proof: We begin by defining a bound, tB(e, x, n), on the magnitude of the 
instantaneous reward at time t > 1. Let B(e, x, n) be the larger of the maximum 
rate at which service rewards are earned, say B', or the maximum rate at which 
holding costs and switching costs are incurred, say B". Let y A max[x, elM, 
e2M,...,  eN-1M], K A max, K,,  S __a max, S,, c A max, c,. With B' A S(y + M) 
and B" ~ K + Nc(y + M), let B(e, x, n) = max[B', B"]. Then, for any 9 ~ G, 
noting that B(e, x, n) is a bound for the case t = 0 we have 

[ Wa~ x, n)[ < B(e, x, n) ( l + t=l ~ tilt) 

= B(e, x, n)(1 +/3(1 - 13) -2) . []  

Define the infinite horizon value function to be V(e, x, n) = supg Wa~ x, n). 
Lemma 2 allows us to directly conclude that V(e, x, n) is finite for any (e, x, n) 
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re. More significantly, the bound on instantaneous rewards that was previously 
obtained in the proof of Lemma 2 allows us to study the infinite horizon value 
function as a limit of finite horizon value functions. Let V~'(e, x, n) denote 
the value function of the T-horizon problem at time 0. 

Lemma 3: For any initial state (e, x, n) ~ 5 ~ and t ~ Z +, 

tim Vtr(e, x, n) = V(e, x, n) . 
T-*co 

(4.1) 

Proof: We mimic the proof of Proposition 3.1(i) of Ross [19]. Let g* denote the 
optimal infinite horizon policy. Then from (2.1) we have 

V(e, x, n) = Eo, {return through stage T} 

+ Eo,{return over [T + 1, 0o)[9* on [0, T]} 

< Vor(e, x, n) + Eg.{return over IT  + t, oo)19" on [0, T]} . (4.2) 

On the other hand, policy g* is by definition superior to a policy which follows 
the optimal T-stage polity (9 T) through time T, then switches to O*: 

V(e, x, n) >_ Vr(e, x, n) + Eg.{return over IT + 1, 0o)[0 r on [0, T]} . (4.3) 

Using (4.2), (4.3), and the bounds on instantaneous reward as defined in the proof 
of Lemma 2, we get the convergence of V0 r in T: 

IV(e, x, n) - Vor(e, x, n)l < ~ tfltB(e, x, n) 
t = T + l  

= ,BT(T(1 --/~) + 1)B(e, x, n),8(1 --/~)-2 , 

which vanishes in T since/~ < 1 and B(e, x, n) is finite. Because the cost criterion 
and system dynamics do not vary in time, the result holds for any t. [] 

Let d(e, x, n) (h(e, x, n)) denote the maximum infinite-horizon expected dis- 
counted reward conditioned on Ut=o = 1 (Ut=o = 0). Using (3.8), (3.9), Lemma 3, 
and the fact that only a finite number of states can be reached at time 1 from 
(e, x, n) at 0, we get 
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lim hr(e ,  x ,  n) = h(e, x ,  n) (4.4) 
T-*oo 

lim d~(e, x,  n) = d(e, x ,  n) . (4.5) 
T~oo 

Moreover ,  the optimality equat ion (3.2) holds in the limit as T ~ oe: 

V(e, x, n) = max[h(e,  x, n), d(e, x ,  n)] . (4.6) 

As the argument  of Theorem 2.2 of Ross [19] indicates, a s tat ionary pure 
Markov  policy that  agrees with the optimality equat ion is optimal. Lemma 3 
together  with (4.4) and (4.5) imply that  V, h, and d inherit all the properties of 
their finite hor izon counterpar ts  as stated in Lemma 1 and Theorem 2. This 
together with the infinite hor izon optimali ty equat ion yields Theorem 3, the 
main result for the infinite hor izon problem. 

Theorem 3: The following stat ionary service policy is optimal when T = oo: 
If in state (e, x, n) e 6 e at t e 77 +, 

clear node n at t if and only if x > 0"(el, e2 . . . .  , en-1), where (4.7) 

0n(el, e2, . . . ,  eN-1) 

inf{z e Z+: d(e l ,  e2 . . . . .  eN-1, z, n) > h(e l ,  e2 . . . . .  eN-1, z, n)} . (4.8) 

Moreover ,  for a n y j  e {1, 2 . . . .  , N - 1} such that  (e + 6(j), x, n) �9 6 e, 

0"(el,  ea, . . . ,  eN-1) > 0"(el, ea ..... , ej-1, ej + 1, ei+ 1 . . . . .  eN-1) �9 (4.9) 

Fur thermore ,  the value function is convex; that  is, for k, j �9 {1, 2 . . . . .  N - 1} 
such that  k ~a j, 

ANVt(el ,  e2, . . . ,  en-1,  x + 1, n) > AnVt(e  l ,  e2, . . .  , eN-1, x ,  n) , (4.10) 

Ajg t ( e l ,  e2, . . . ,  ej-1,  ej + 1, ej+l . . . . .  eN-1, x ,  n) 

>_ AjV,(e l ,  e= . . . . .  eN-1, X, n) . (4.11) 

Discussion: The threshold property,  (4.7) is implied by A n d  > ANh. Similarly, the 
monotonic i ty  proper ty  of (4.8) is implied by Aid > Ajh. It is interesting to ob- 
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serve the relationship of the finite horizon threshold to the infinite. Let 0g(e, T) 
denote the T-horizon threshold at time 0. If limr_~ ~ 0g(e, T) exists, it is easy to 
show that that this limit is 0"(e). The difficulty is that, under certain circum- 
stances, the limit may not exist. Specifically, for states in which two control 
actions are optimal, the following technical difficulty can arise: Suppose that 
d(e, x, n) = h(e, x, n) and 0"(e) = x + 1. The limit of 0~(e, T) may fail to exist in 
such a case if, for example, hr(e, x, n) > dr(e, x, n) if and only if T > T' and T is 
odd. In this case, 0g(e, T) equals x + 1 for T large and odd, and equals x for T 
large and even. 

5 Conclusions 

We modified the problem of Van Oyen and Teneketzis [24] to include a ring 
network of arbitrary finite size, an infinite capacity server, job service rewards, 
and a network with no information flow among the nodes. We proved the 
optimality and monotonicity of threshold policies in both finite and infinite 
horizon problems. Moreover, the value function was shown to be convex. The 
dynamic programming equations explicitly indicate the manner in which infer- 
ential information is to be used. In this problem (as well as in [24]), the resolu- 
tion of the dual aspect of control is implicit in the optimal threshold functions. 
Both models assumed a cyclic service of the queues (which is quite reasonable 
for some AGV systems and many polling systems). It is our hope that the 
understanding gained from our contributions will provide a basis for the resolu- 
tion of similar issues in information networks and other systems. 
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