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where J is a real valued function of the “state of the world” o e 0, and
the decision w. Initially, differem people have different [”f"i’malion
relating 1o w. This is modeled by stipulating that person i observes the
value of the random variable Y, = Y,(w). Everyone knows that j knows

A
Y,. although j, j# i, does not know what the value of Y, actually is. _,;"_
Evervone knows the function J. = o

Each person has a prior belief concerning w. We stipulate that s prior
beliet is summarized by the probability distribution P’ on ((). F), where F .
is the o-field of events. If P'=-.-= P we say that the beliefs are ©+
consistent; otherwise they are inconsistent.

Since initially different people have different information. and also
because their beliefs may be inconsistent, their estimates of the best
decision will also be different. To arrive at a consensus decision it is
necessary for them to share information. We suppose that this in-
formation is shared by means of the following procedure.

Consider person i. In the first round he makes an estimate (1), which
is based on his initial data Y,, and he communicates this estimate to some
or all of the other members. By the time i makes his second estimate. he
will have received the estimates of some of the others. More generally,
denote by D,(1—1) the messages received by i from the others before i
makes his (th estimate w;(r). That estimate will be based on Y, and
D.(t—1). We assume that i communicates all his estimates to a fixed set
of the other people, and that there is a message transmission delay of one
time unit.

Our aim is to discuss two questions: Will each person's estimate
converge as (— =? If the individual estimates converge, will they reach a
common limit? To formulate these questions mathematically, we need to
specify how each person estimates the best decision based on the data
available to him. This is done in Section 2. Once this is done, it turns out
that the answers depend crucially upon whether the prior beliefs are
consistent or inconsistent. The consistent case is considered in Section 3,
and the inconsistent case in Section 4. Section 5 outlines some directions
for further research.

2. ESTIMATION SCHEMES

Several different estimation schemes have been considered in the lit-

erature. .
Borkar and Varaiya [2] consider the situation where the commutie¢

wants to estimate a random variable X, and they suppose that the rth #

estimate made by i, u;(t), is the conditional mean of X given the =
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available data, that is,

ui(’)=Ei{Xt Y., Di(+— D} (2)

ra

' Here E' denotes expectation with respect to P!, We see later that the
~ right-hand side of (2) has to be interpreted carefully when the beliefs are

inconsistent. For the moment observe that the estimate given by (2) is
also the decision that minimizes the (expected value of the) cost function

J(w, w):=|X(w)— ul?

when the information available is {Y., Di(t+— 1)}. Aumann [1], and
Geanakoplos and Polemarchakis [4] consider the situation in which the
group wants to estimate the probability that a particular event F € F has
occurred. This is a special case of (2) with X = 1(F). The set Q of all
possible states is finite is [1] and [4]. Tsitsiklis and Athans [7] consider
the situation described in the introduction. Sebenius and Geanakoplos [5]
discuss the following situation. Suppose there are two people 1, 2, and let
Fe F. Person 1 is allowed to offer a bet, which person 2 may accept or
reject. If the bet is accepted and if F is true, that is, if w € F, then 2 must
pay 1 a fixed sum of money; whereas if F is false, then 1 must pay 2 the
same amount. It follows that 1 will make the bet if and only if the
conditional mean of 1(F) given the data available to him is greater than %,
and 2 will accept the bet if and only if the mean conditioned on the data
available to 2 is less than 3. This situation can also be reformulated as a
special case of Eq. (1) as follows. Take the cost function to be

Jw, u):=[1(F)—u| (3)

and suppose the decision u is restricted to the set U={0,1}). Then
person 1 will offer the bet if and only if the decision that minimizes the
cost (3) is u=1, and person 2 will accept the bet if and only if the cost
minimizing decision is u = 0.

Washburn and Teneketzis [8] consider a very general communication
framework that includes all the situations mentioned above as special
cases. They assume merely that in the rth round, person i selects the

decision u according to the rule y = d(Y;, Di(t—1)). The decision rules d
are known to all.

3. CONSISTENT BELIEFS
3.1 The Borkar-Varaiya Estimation Scheme

i In Sections 3.1 and 3.2 it is assumed that the beliefs are consistent, that
Is,

Pl=...=pN.—p say.
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Consider first the case studied by Borkar and Varaiva, in which the nh
estimate made by / is the mean of X conditioned on { Y, Di(t~1)). (It is
assumed that E|X|<x) Let Y;(t—1) denote the o-field generated by
the {Y;, D,(t+~ 1)}. Then

u() = E{X|Yi(«— 1)} ()

Let Yi(=):= V,Y/(1). Since Y/(1) is an increasing sequence, it follows
from the martingale convergence theorem that

wlt) = w(x)a.s; w(=x):= E{X]|Yi(*). (5)

Thus the individual estimates do converge.

Next we investigate whether the limiting estimates agree. Suppose i
communicates his estimates to j. Then w(f) is Y;(¢+ 1)-measurable,
From (5) it follows that (=) is Y, (x)-measurable, and so,

ui() = E{u;(=)] Yi() N ¥ ()} (6)

Suppose there is a communication ring iy, ..., i, =i,. This is a not
necessarily distinct sequence of persons such that i, communicates his
estimates to i4,. Then, according to (6), we must have

w (<) = Elu, ()Y, ()N Y, (=)},  k=1,....n, 7
where i+, 1= i;. It is quite easy to show [2, lemma 2] that (7) implies
Wy ==
so that the asymptotic estimates of the members of a communication ring

agree. This suggests the main result of [2].

Theorem 1. If the estimates of i are given by (2), then each person’s
estimate converges. Moreover, if everyone in the team is a member of the
same communication ring, then the limiting estimates agree.

Proof. See Appendix A.

A careful study of the preceding argument reveals that the estimation
scheme (2) enjoys two properties:

1. The estimate is “continuous” with respect to a monotonically
increasing sequence of data, that is (5) holds.
2. The schemes satisfy the “agreement” property (7).

This observation underlies the work of Washburn and Teneketzis (8],
which we discuss next.
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3.2 The General Case

The estimate (2) is an instance of a decision rule of the form (1) -
d(Yi. Di(1—1)). This suggests the following abstract definitions:

I. A decision rule is a function that associates to any o-field BCFa
B-measurable random variable u = d(B) with values in the feasi-
ble set U.

2. A decision rule d is said to be continuous if for every increasing
F(1)C F(2)C - - - one has

lim d(F,(k)) = d( VF.(k)) a.s.
K==
Let d be a decision rule for the team. This rule recursively
generates a sequence of estimates (decisions) by:
w(n):=dlY(1—1)), i=1,2,....n (8)
Y(0=0o{Y,, Di(t—-1)}, i=1,2,....n (9)
where o( Y, Di(t— 1) denotes the sub-o-field of F generated by
Yi, Di(t—=1). Let Yi(ee)= V,Y.(1) and u;(=) = d( Y.(=)). The fol-
lowing lemma is immediate from the definition of continuity.

Lemma 1. [f d is a continuous decision rule, then for every i

lim (1) = (). (10)

Suppose iy, iz, ..., inss = i, is a communication ring. Then for each k,

u,(f) is measurable with respect to Y, (0N Y, (t+1)C Y. (®).1fdis
continuous, this yields a chain of conditions:
d(Y, (=) is Y, -measurable, k=1,2,....;0 iga=i.

We say that d satisfies the agreement condition for rings if for every
sequence (i, F;) -« * (in+1, Fy,,) = (i1, F,), the chain of conditions

d(E;,) is F

=ik

-measurable, k=1,2,...,7
implies
d(F)=d(F,)=---= d(F).

From Lemma 1 and the earlier definition one can prove the main result
of Washburn and Teneketzis [8].

Theorem 2. If the decision rule d is continuous and satisfies the
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agreement condition for rings, and if everyone is a member
- communication ring, then the individual estimates converge
limit.

Proof. See Appendix B.

If the decision rule d is the conditional expectation as in Eq. (2), then
the continuity requirement is just the martingale convergence property;
the agreement condition for rings is also satisfied, as shown by Lemma
A.3 of Appendix A. Washburn and Teneketzis [8] show also that the
agreement condition for rings is satisfied by decision rules tha are
optimal in the sense defined below,

Proposition 1.  Suppose that d is a decision rule such that ol{d(F)YCF for
all o-fields F' C F. Then d satisfies the agreement condition for rings if
and only if there is a partial ordering < of the set of functions {d(F): F'c
F} such that d(F') is the maximum element of {d(G): GC F. o(d(G)) C
F'} with respect to <.

Proof. See Appendix C.

In many cases, as in [2], [7], the partial order relation is defined in
terms of a scalar cost function. The following proposition proves that
decision rules defined by such cost functions satisfy the agreement
condition for rings, provided that the decision includes a tie-breaking
rule if the cost function has more than one minima.

Proposition 2. Suppose that the decision functions take values in a set U.
Let L be a real-valued functional of F-measurable decision functions
8:Q— U. For each F' let D(F') be the set of F'-measurable decision
functions & such that L(8) < L(&') for all measurable §': Q— U. Assume
that U is partially ordered by <' and that for each F’, there is a 6 € D(F)
such that 8 € D(F') implies 8'(w) <' 8(w) for all w € Q). The decision rule
d(F") that assigns this 8e D(F') to F' satisfies the agreement condition
for rings.

Proof. See Appendix D.

Typically, L(8) will have the form
L(8) = E{J(8(w), 0)} = E{J(u, w)}. (an

Under assumptions that guarantee that L has F’-measurable miqima (i.e
D(F") # ¢), Proposition 2 implies that the decision rule minimizing L(8), %
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that is,
d(F) = arg min E{J(w, u)|F}, (12)
ue J

satisfies the agreement condition.

In addition, when F(1)1F, under fairly weak conditions
E{JC, d(E(ON| Fi(1)} is a convergent supermartingale, converging to
E{J(-, d(F)| Fi}. Under certain conditions, such as uniform strict con-
vexity of J, U a finite dimensional compact convex set, [7], convergence
of the optimal costs implies convergence of the arguments d(F(r)—
d(E). Thus, the decision rule described by Eq. (12) satisfies the con-
tinuity condition. Consequently, Theorem 2 applies to the situation
studied by Tsitsiklis and Athans {7].

REMARKS

1. The agreement condition of Theorem 2 is the essence of the
agreement problem. The continuity condition is necessary to deal
with cases involving infinite measurement o-fields.

2. In [2,7,8] the message exchange model is extended to accom-
modate the situation where (1) i makes a sequence of observations
Yi(), t=1,2,--- and not just the initial observation, and 2) i
communicates his estimate (1) to a randomly selected set of the
other people, and message transmission takes a random amount of
time. These extensions can be easily incorporated in the analysis
and Theorems 1 and 2 continue to hold with some minor
modifications.

3.3 Common Knowledge

The main feature of the estimation schemes presented in [1], [2], [4],
[8] is the following. If all team members use the same decision rule, if
everyone in the team is a member of the same communication ring, and
if common knowledge decisions agree, then all team members agree on
the same decision. The common decision is the decision based on the
ultimate common knowledge (common information) of the team mem-
bers.

Thus, it appears appropriate to define common knowledge at this
point, and to show that the definitions of common information given in
(1], (2], [8], [9] are essentially equivalent and lead to the same results.

Aumann [1] represents information by a partition P on the sample
Space ). Borkar and Varaiya [2] and Washburn and Teneketzis [8]
fepresent information by o-fields contained in F. It can be shown that
these two representations are essentially equivalent. The partition P is a
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collection {E,, E,, ...} of mutually disjoint events whose
whole sample space. To a partition P there corresponds a unique o-field
F. namely the o-field generated by the events in P. Each E, ¢ P is an
atom of F. If P,={E,, E,,...} and P,={G,, Go,.. .}, then one can
define a third partition P; that is the finest partition contained ip P, and
P, and is denoted by P, A P,. If P, and P, correspond to the o-fields F,

and F;, then P, A P, corresponds to Fy A F;. Aumann [ 1] defines an event

union js u,e

IN VARA]YAI :

E to be common knowledge to team members 1 and 2 (with information -

P, and P, respectively) at w if there is an atom G e Py A Ps such that
we GCE.If F, and F; are the o-fields corresponding to P, and Py,
respectively, then the definitions of common knowledge at w given in [2],
[8], namely that there is G e FianF, and we GCE, are equivalent o
Aumann’s definition. Let us say that the event E is common knowledge
to the team members 1 and 2 if it is common knowledge at each we E.
Then E is common knowledge to 1 and 2 if and only if it belongs to the
o-field generated by P, A P5, namely F, A F>.
Milgrom [9] characterizes common knowledge by

I associating with each event E another event K, with the inter-
pretation

Ke ={we Q: E is common knowledge at w)

(9]

considering the following four conditions:

(Cl) KeCE

(C2) VweKg, Vi, if weF, F,CKg

(C3) E\,CE;> Kg, CKpg,

(C4) [Vi,VweE, if we F,FeE]>E= K.

Condition (C1) asserts that an event E is common knowledge only if it
actually occurs. Condition (C2) implies that if E is common knowledge,
then every team member knows that E is common knowledge. Con-
ditions (C1) and (C2) imply that E is common knowledge only if E
occurs, each team member knows E, each knows that all know E, and so
on. Condition (C3) implies that wherever E, is common knowledge any
logical consequence of E, is also common knowledge. Condition (C4)
asserts that public events are common knowledge whenever they occur.
A public event is defined by the antecedent in (C4): it is an event that if
it occurs, it will be known to every team member. Milgrom [9] shows lht‘.ﬂ
his characterization of common knowledge is equivalent to Aumanns
definition.

The definitions of [1], [2], [8], [9] are equivalent and lead to equivalent
agreement conditions. In [1] Aumann notes the simple fact that if the
conditional probability functions P(E|F,;) and P(E|F;) are common
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knowledge to 1 and 2 (ie., they are both F, A F,-measurable), then
P(E|Fy) = P(E|F). The following proposition shows that this statement
of Aumann is equivalent to the condition for agreement in [8].

The conditions

o(dtE))C R CF = d(F) = d(F,)

Proposition 3.
(13)
of [8] and

old(E)) v o(d(F2) C FL N F = d(Fy) = d(F)

(14)

of [1] are equivalent.
Proof. See Appendix E.

In Aumann’s terminology, [1], Eq. (14) asserts that if the decisions
d(F\) and d(F,) are common knowledge to 1 and 2, then they are equal.
Aumann showed that this condition is satisfied by the decision rule

d(F) = P(E|F).

It is possible to show [8] that this condition is also satisfied by the
Maximum a posteriori (MAP) decision rule. The conditional expectation
satisfies condition (13) because of the following fact: If G C F and some
version of E(X|F) is measurable w.r.t. G, then E(X|F)= E(X|G) with
probability one.

The idea of common knowledge proved to be useful in game theory
and various areas of mathematical economics. Wilson [11] studied al-
location problems under differential information, and defined an efficient
allocation in a world of differential information in a way that can be
stated succinctly using common knowledge: A contingent allocation f is
efficient if there is no other allocation v such that it is common know-
ledge that all agents prefer v to f. Milgrom [9] and Milgrom and Stokey
[10] used the idea of common knowledge to analyze a rational expec-
tations trading model. They showed that when traders exchange a risky
security on the basis of private information then they “agree to disagree”
(ie., no trade takes place). Kreps et al. [12] consider finite repetitions of
the well-known prisoners’ dilemma game. A common observation in
experiments involving finite repetitions of the prisoners’ dilemma is that
Players do not always play the single-period dominant strategies, but
instead achieve some measure of cooperation. Kreps and his co-authors
in [12] show that the lack of common knowledge about one or both
players’ options, motivation, or behavior can explain the observed
Cooperation.
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4. INCONSISTENT BELIEFS

- 4
#h

5

. ]

The analysis is quite different when the beliefs are inconsistent. The
discussion in this section is initially based on Teneketzis and Varaiya [6).
Then the results of [6] are extended to the case of a gener
d. To keep the notation simple assume there are only two
and Beta. Initally, Alpha observes the random variabl
observes B. Both wish to estimate the random v
assume that €} is finite. The prior
denoted P, PP, respectively.

For t1=1,2,... the tth estimate by Alpha(Beta) is denoted a,(g,). The
term @, is the conditional expectation of X given

persons, Alphq
€ A and Beta
ariable X. We galso
probabilities of Alpha and Bera are

the observations

A, Biiwses Bi-1. After a, has been calculated it is communicated to Beta
whose tth estimate is the conditional expectation of X given
! O P e,. Once B, is evaluated it is communicated to Alpha, who

incorporates it into the estimate a,,,, and the procedure is repeated,

To complete the specification we assume that the estimation pro-
cedures followed by Alpha and Beta are consistent with their own prior
models. That is, each assumes the other's model to be the same as his
own. Consider Alpha. When he receives Beta’s estimate g,_,, Alpha
interprets it as if it was based on P* rather than on P*. Thus Alpha
assumes that Beta's estimate is a realization of the random variable

Bi—1:=E*{X|B, ay, ..., a_}.
Subsequently, Alpha calculates a,,
a,:= E*{X|A, Bh ceny ;én—i}-
Symmetrically, Beta interprets a, as
d,:= EP{X|A, B, ..., B},
and calculates g, by
B::= EP{X|B, &,,..., &}

There is a more revealing description of the functional dependence of
these estimates. Suppose a particular realization @ = (A, B) has occurred.
Since Alpha observes A, he concludes that & « Qf:={(A, B)|A= A},
and so his first estimate equals

a = E*{X|A = A} = E*{X|w e Q%}.

al decision rule

Alpha transmits the number &, to Beta. Beta interprets it as a realization

of the random variable

a; = EP{X| A},
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and so he infers that & € Qf :={w|d\(w) = &,, B= B}, and his first esti-
mate takes the value

B, = E*{X|we Q8.

This value is communicated to Alpha.
At the beginning of the rth round, Alpha starts with the inference

o<l when he receives the estimate B, ;. He interprets it as a
realization of the random variable
B!-I = Ea{XI B. [2 S PR a,_l},

and 5o Alpha concludes that @eQ:={w|we Q% fii(w) = fi.}.
Hence, Alpha’s rth estimate takes the value

&= E*{X| we Q)

which is communicated to Beta. Whereupon Beta interprets it as a
realization of

=E*{X| A By, ..., B}

concludes that @ € O :={w| we O, d(w) = 4}, and evaluates his rth
estimate as

= E#{X| we QF}.

Thus, as expected, the uncertainty diminishes with each exchange,
Qe,cQ, 08, C Q8 From the previous description we also see that if
for some k either O, = Qf or Qf,, =Q¢, then QF=0%¢,, and Q8 =
0%+, for t> k+ 1. Hence for +> T (which cannot exceed the number of
distinct elements in ), Q¢ and Q¥ become constant. These limit sets
depend upon the realization . Call them Q%{w) and Q8 (w), respectively.

There are two possibilities. The first is that Q“(m) = ¢ and QB (w) = ¢.
This happens because at some stage the message B,-l received by Alpha
is “impossible”: there is no & such that B,-l(w) = 3¢—1: or the message &,
received by Beta is “impossible”: there is no @ such that a,(@) = &,.
Alpha and Beta must realize that their prior models are inconsistent. Let
{ be the set of all realizations that lead to this outcome.

The second possibility is that Q%(w) # ¢ and QB(w) # ¢. In this case
for t> T the estimates stop changing: B,(w) = Bu(w), alw)= alw),
@ (w) = d.(w), B(w) = B.(w). Since for every f, B,(w) = B(w) and &(w) =
o {(w), it follows that

Bow)=Buw), dlw)= alw).

On the other hand, since B, and «a, are based on the same model, namely
P, it follows from Theorem 1 that S.(w) = a.(w). For the same reason
a.(w) = B.(w). Thus if weQy:=0-Q,, there is agreement o (w)=
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Bilw) for 1> T. It is worth emphasizing that this agreement neeg
a reflection of the consistency of the two models P, p#,

agreement occurs because within each person’s model there s sufficieny
“uncertainty” to permit the reconciliation of the other's messages wigg
his own observation. One might say that agreement could resuls fr

om two -
wrong arguments. We summarize the preceding analysis as follows:

not be
Rathey *

Theorem 3.  The set of events O decomposes into two disjoint subsers 0,
and Qy. After T exchanges, if w e, both agents realize their models
are inconsistent, whereas if we Qy the two estimates coincide.

The result is fragile. In particular, whether a realization ¢ ends in
agreement or in impasse can depend upon the order of communication
between Alpha and Beta as demonstrated by the following example.

ExaMPLE. Take Q=[0,2]x[0, 3], suppose Alpha observes

A = {1(‘1!)3 1(02)}
and Beta observes
B ={1(b,), 1(b,), 1(by)}

and suppose X is the indicator function of the shaded region as shown in

Figure 1. Assume that o is uniformly distributed under P*, whereas
under PP,
PB(b1)=i%» Pﬂ(b2)=f%, PB(bs)z‘i%

and within each b;, o is uniformly distributed. Suppose & e a, N b and
that Alpha communicates first. Then

d,=E(X|wea)=14.
Beta interprets this as a realization of

d, = E(X| 1(ay)1(ay)).

N
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since EP(x|lwe a))= . Ef(x|we a,) = i, upon learning that a, = !,
Beta concludes that @ € a., and since he has observed that @ b, his
gstimate is

B =E*X|wea,Nby)=1.
Alpha interprets B, as a realization of E* (x| w € a,, B). Since
E*(x|wea,Nb)=}
1
i

E“{.’c| we a Nby)=:

E®(x| we a; N by) =1,
Alpha concludes that @ € a, N b,, hence
d»=E*(X|wea;Nby)=4%.
Evidently, 53 = ﬁ, =..e=g,=dy=-+-=3 and there is agreement,
(Note that Alpha believes that w € a; N b,, Beta believes that @ € a; N bs, ¥
and in fact @ € a, N bs.)
Now suppose again that @ € a; M bs, but this time Beta communicates
first. Then
Bi=EP(X|we by)=1.
Since
E*(X|we b)) =1,
E*(X|we b)) = E*(X| we by) =1,
upon learning B, =3, Alpha concludes that & € b, U bs. Then his estimate
is

d, = E*(X|wea N(bUby)) =4.

But Beta expects a, to take on the value
EB{XI wE a, n [bz U b;)) =04
or

E?(X| w e ay N (byU bs)) =0.6.

Thus Beta concludes that the models are inconsistent.

The results of Teneketzis and Varaiya [6] can be extended to the case
where the decision rule is a general function d, as in Section 3.2. We
discuss this case next.

Assume the same model as in Teneketzis and Variaya [6] and suppose
the estimates a, and B, are generated by the decision rule d given the
Observations A, By, B2,...,B8-1 and B, ay, a,..., ay, respectively.
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Suppose the decision rule d satisfies the agreement condition: for all
Gy, G,CF,

{f‘(“ (...';:” C (:;1.C (L;: l> d( (_l]] = (“(_;w}_ {15)

Under the previous assumptions one can prove the following result.

Theorem 4. If ) is finite and the decision rule d satisfies the agreemeny
condition (15), then either the estimates a and B agree after a finite
number of communications or Alpha and Beta realize that their models
are inconsistent.

Proof. See Appendix F.

As pointed out in the discussion previously the investigation of con-
vergence and agreement of the estimates can proceed in two steps.

. Determine what each team member’s model predicts about the
evolution and the outcome of the estimation process.

Examine how these predictions compare with what actually hap-
pens during the estimation process.

I

For finite Q. the result of Theorem 4 is true for rules that obey the
agreement condition for a very simple reason. If a team member’s view
of the world is consistent with reality, then agreement must result after a
finite number of communications, because this is what is predicted by the
team member’s model; anything else would be inconsistent.

5. CONCLUDING REMARKS

Recall the discussion in Sections 3.1 and 3.2. There a consensus is
reached via a sequence of exchanges of tentative decisions. The in-
formation available to a person increases with each message exchange
and the limiting consensus decision is based on the information common
to all in the sense that d,(=) = - - - = dy(=) is measurable with respect 10
Yi(=)Nn---N Yn(ee). A consensus can also be reached if all people share
their initial private data Yy, ..., Yn. We may call this consensus the full
information decision. It turns out that the consensus reached .by
exchanging tentative decisions need not coincide with the full in-
formation decision. Within a rather simple model, however, Geanakoplos
and Polemarchakis [4] have shown that the two decisions are ‘‘almost
always” the same. It would be worth investigating this in a more general
setting.
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Secondly, even when the two decisions are the same, it does not follow
that all people obtain the full information, that is, it need not be the case
that  Yi=)=o{Y, ... Ya}). If Yi(x) is a proper subset of
ofYi,..., Yn}, then one could argue that reaching consensus via
exchange of tentative decisions requires a transfer of less information
than the exchange of all private information. This too is worth further
investigation,

Recall now the discussion dealing with the case of inconsistent beliefs.
The most interesting finding is that Alpha and Beta can exchange
statements about X and eventually agree even when their views are
different. Thus paradoxically, the realization that these views are
different is only reached when further communication becomes im-
possible. This raises several basic and knotty issues that need further
investigation.

One can readily imagine situations where the most important thing is
to determine whether or not the beliefs are inconsistent. In the com-
munication setup of Section 4 the realization that beliefs are inconsistent
is fortuitous—it happens only if Alpha and Beta reach an impasse. How
should one structure the set of message exchanges so as to expedite the
reaching of an impasse?

Suppose now that Alpha and Beta do reach an impasse {(w e Q;). Our
analysis stops at this point, but there are two directions that can be
pursued. First, observe that with the realization that their beliefs are
different comes the understanding that they have “misread” each other’s
messages (i.e., they now know that B,,%B,, and &, # a,), and con-
sequently their estimates have been “biased.” To eliminate this bias each
needs to learn what the other’s view is. A straightforward way of
permitting such learning is to suppose that from the beginning Alpha
admits that Beta’s model P# might be any one of a known set P? of
models and there is a prior distribution on P? reflecting Alpha’s initial
judgment about Beta’s model; a symmetrical structure is formulated for
Beta. Within such a framework it seems reasonable to conjecture that
each agent will correctly read the other’s message and his sequence of
estimates will converge. But if their models are different, then the
limiting estimates may differ, and a consensus will not emerge.

Suppose, however, that Alpha and Beta want to reach a consensus. To
reach a consensus one or both must change their models. One can
imagine many different ways in which this can be done. For example, De
Groot [3] proposes that each person tell the others what his prior
Probability is, and he proposes an ad hoc behavioral rule whereby each
person adjusts his model to a weighted average of the others’ models.
This is not very satisfactory in situations where communicating one’s
Prior beliefs is not practicable.
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APPENDIX A

Proof of Theorem 1

from the martingaje #- -
of the theorem proceeds in &
let G,(1) denote the 7-field
f messages from ag

Convergence of each member’s estimates follows
convergence theorem. The proof of the rest
several steps, Consider two agents 7 and j and
generated by the transmission and reception o

ent iup ;
to time . That is,
G = ofuy(l), ... . u(t—=1),.... u,.lll).....u,_df—Il,u,!'].‘,.. .

(T g 07 R () [ S Woylt—1),.... 79 (3 1) IR (1 —1)}
Gi(0) = olu(l),. ... :t.fr'--l)‘,...u‘,.ﬂl) ..... o (e=1), w(l), ...

W), wpy (1), ..., Wipy(t=1),..., (1), ..., Up(2), ... uy (1= 1)).

Define SY to be the event th
often.

at agent { sends messages to J inﬁnitcly

Lemma Al. Boh u(=)1(S") and w;(=)1(SY

) are common knowledge for
G (=) and G, (=). Moreover,

u(=)1(8") = E(X| G,(=) N Gi(=))1(8%) a.s. (A.1)
and

(=) 1(S) = u;(=)1(8) (A.2)

where
S=8'n§k (A3)
Proof. Since there is a message transmission delay of one unit, it {OIIO\I\{S
that §Y is in G, (=) and G;(=). Since (1) is G;(1+ 1)-measurable it
follows w;(=) is Gi(=)-measurable. Similarly w,(=) is G,(x)-measurable.

Consequently,

w(=)1(S") = E(X| G(=) N G(=))1(§").

Similarly,

u}.(-:c)l(SJ!) — E[XI G|(°°) N G’(w))l(s;:)
Hence,

(=) I(S) = u,(=)1(S).
u(®) 1(S) = u (=) 1( -

To proceed further we need the following result.

: nd 7
Lemma A2, et 215225+ 2.3 Zpe1 =2y be random vectors a |

:3@
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{ A vi s o Fi.. F,, ..., F, be o-fields such that
rem 1 ."'- | Z,=E(Z,»+1|_I_:,»), =12, ., 7. (A4
ites follows from the riwrtingtg]e‘T # Then

rest of the theorem proceeds nt
“and let Gi(1) denote the o-field

-

ion of messages from agent i up 5

21222=23="'=Zn a.s. (A.S)

Proof. We can assume that z; are scalars, since by applying the same
e argument to each component we can generalize the result to random
[T u,,,(t'ﬁi’y: w( 4 vggtors. Suppose'ﬁrstl that each z; is square integrgble. Since con-

0 ‘ S eE ditional expectation is the best mean square estimate and =
Unl D)ooy gt =)} = E(zis1/ F), it follows that

'.-u,u,w({f\l), w(l),..., = -~ E|zin P = E|z}* + Elzj+1 - %, i=12,...,n
Un(D)s sy g (), gt = 1)} Adding the above relations and using z,., = z, we get
sends messages to j infinitely

n
0= Z EIZH.l“‘Z,"z.

i=1

(SY) are common knowledge for Consequently z,=2z,=z3=---=2, Thus, Lemma A2 holds for
T square integrable random variables. To complete the proof of Lemma
+ - = A2, for any number K let z¥ =min {zi, K}. Then, by Jensen's in-
e i g
G=DI(ST)  a.s. (A.) equality, z; = E{z;.,| F;} implies
7% XK= E(zK,|F}), V.. A6
II(S) (A2) il (A-6)
B The last inequality implies
(A3) Ezf2Ezf=---=EzX= EzX, = EzK.
Consequently, (A.6) holds with equality.
ion delay of one unit, it follows | Therefore, for k; > k,
(1) is Gj(t+1)-measurable it i ki ke Bk k|
arly () is Gi(=)-measurable. zetmzi= Bz =zl B).
- 5 Since zf+— z{2 is bounded, it is square integrable; therefore
N Gj(wﬁ(sﬁ. - 8 z’l‘l —Zi‘z = 2'2‘1 —zé‘z e e = Z:‘ —Zf'z.
e a Lemma 2 follows by letting k;—« and k, — .
: |
N Gj(«2))168%).

Lemmas Al and A2 can now be used to prove the following result.

Lemma A3. Suppose that
L. iy dg, ..., iner =i, form a communication ring for S, and
2. 1(S) is common knowledge for G,(«), G5(), . . ., G ().
Then u;() agree on S, that is,

uy(®)1(S) = up(@)1(S) = - - - = U, (=) 1(S) ass.

)I(S)' A ~:;‘f' & S

g result.
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Proof. By Lemma Al

G SN = E(X| Gi(=) N G\, ()

= Elties(®)] Gi(=) N Gyoy()}1( 57040 (A.8)
E{u,;,f-ulr_s"""“)[ Gi(=)N G,Hi'f—J}_
By hypothesis (2) S C G,(=) and §C 1

. Multiplication of both sides
of (A.8) by 1(5) gives

u(=)115) E{u(2)1(S9)|G,(=) N Gia (=)},

(A.9)
Equation (A.9) and Lemma A2 imply
(=) 1(S) = up(=)1(S) = -+ - = w,(=)1(S).
Lemma A3 can now be used to prove the following result,
Lemma Ad4. Under the hypothesis of Lemma A3
u(=)1(S) = E{X| G\(=) N Gy(=) N - - - N G, (=)} 1(S). (A.10)
Proof. By Eq. (A.9)
w(=)1(S) = E{X1(S)| Gi(=)N Giwr(=)}. (A1)
By Lemma A3
U (%) 1(S) = uy(=)1(S),
thus, w(=)1(S) is common knowledge for G,(x=), Gy(=),.... G,(=).

Taking conditional expectation with respect to G,(=) N Gi=)N---N
G, (=), we obtain

w(=)1(S) = E{X1(S)| G(=) N Gx=) N - - - N G, (=)}

=E{X| Gi(®) N Gy(=)N---N G,(=)}1(S)

since by hypothesis 1(S) is common knowledge for G,(=),
Gz{m}, P Gn{mj

The assertion of Theorem 1 now follows from Lemma A4, since 1(0)
is common knowledge for all persons. The estimate of each agent
converges to E(X| Gy(=) N Gy(x)N -+ - N G, (»)).

APPENDIX B
Proof of Theorem 2

The information of team member i is described by the o-field Y;. The
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7i(2) N Gpay ()}, (A.11)
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a7

s from Lemma A4, since 1({)} ,';t;;
The estimate of each agen
G"T(w))' i ,;,—: = =

Consensus in Distributed Estimation 379
Y+ )= YV \/ odYi(0), (i=1,2.....9) (B.1)
jeli]
with initial condition
Yi(0) = y,(0), (i=1,2,...,7m) (B.2)

where [i] is the set of team members with whom i communicates either
directly or indirectly. By assumption all the team members belong to the
same communication ring; thus, (B.1) can be written as

Yie+ = Yo vV otd(y, ),
j¥i

Since Yi(1) 1 Yi(), it follows by the continuity of the decision rule d that

i=1,2,...,9.  (B3)

lim (1) = (). (B.4)
Then Egs. (B.1) and (B.2) imply that for each k, j we have
o(d(Yi(1))) C Yj()
and
o(d( Yi())) C Y;(0)
Then the agreement condition for rings implies that
Ui(%) = up() = uy(w) = - - - =y, () = d(N Yi(=)).
APPENDIX C
Proof of Proposition 1
At first we show that if
d(F") =max{d(G): GCF, o(d(G)) C F}, (C.1)

then d satisfies the agreement condition for rings. Suppose that
o(d(F"))C G C F'. Because GCF', d(G) = d(F'). Since o(d(F))C G, it
is clear that d(F)e{d(H): HCF, a(d(H)) C G}. Thus, d(F) < d(G).
The relation < is a partial order; consequently d(G) = d(F’) and d(F) =
d(G) imply d(F) = D(G). Hence, d satisfies the agreement condition for
pairs and in particular d(o(d(F"))) = d(F). Suppose F, = F,+1 and
O'(d(EK)) C EK"‘I forl1=K=< n. Then

d(Fx) = d(o(d(Fx))) = d(Fi.1)
for each K, hence d(F))=d(Fx) < d(F,+) = d(F,), and so d(F) = d(EK)
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for all K. This shows that the decision rule d defined by Eq. (C.1) £
satisfies the agreement condition for rings. {fi

Conversely, suppose that d satisfies the agreement condition for rings,
Define the partial order < on {d(F"): F' C F} as follows: Write d(F) s
d(£2) if and only if there is an integer n=1 and o-fields Gy CF,
Il=K=m, such that o(d(F\))C G, a(d(Gx)) C Gk+y and d(G,) =
d(F;). It is easy to see that d(F) = d(F) for all FFCF (hence, < g
reflexive), and that d(F\) = d(F,) and d(F>) = d(F3) imply d(F)) < d(F,)
(hence, = is transitive). Suppose d(F)=d(F,) and d(F,) < d(F\). Then
there are o-fields Gk CF, 1=K < n+m, such that o(d(G,,,.))C G,
HA(G) C Gty 1SK=n+m=1, d(F)=d(Gyrm), and d(F,)
d(G,). The agreement condition implies that d(Gy) = d(G,) for al K,
therefore d(F\) = d(F). Consequently, < is antisymmetric and so < jg a
partial order. Finaily, if GCF and o(d(G)) C F', then d(G) = d(F’) by
definition of =. Hence, d(F") is the maximum element of {d(G): G F,
a(d(G)) C F'} with respect to =.

APPENDIX D
Proof of Proposition 2

Suppose 8y, 8;: Q— U are F-measurable. Define 6;="68; to mean
either that L(8,) < L(§,) or that L(8;) = L(8,) and 8,(w) <’ 8,(w) for all
w. It is easy to see that =" so defined partially orders all F’-measurable
decision functions. Suppose that F'CF and & is an F'-measurable
Y decision function. Since d(F") € D(F’), by assumption L(8) < L(d(F)). If
oy | L(8) = L(d(F"), then 6¢ D(F") also, and 8(w) <' d(F)(w) for all w. It
follows that d(F") maximizes {8: o(8) € F} with respect to <". In parti-
cular, d(F') maximizes {d( G):o(d(G)CF, G C F}. Thus, Proposition 1
implies that d satisfies the agreement condition for rings.

APPENDIX E
Proof of Proposition 3

Assume that the condition
o(d(F))C F, C F, = d(F) = d(F,) (E1)

is true. Then o(d(F)) v o(d(F,)) C Fy N F, implies o(d(F,)) C F N F2C
Fy, which in turn implies d(F}) = d(Fy N F). Likewise, d(Fy) = d(F N FD.
Hence, the condition
o(d(Fy)) v o(d(Fy)) C FNE>d(F)=dF)

is true.
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= L(8)) and 8(w) =<' 8y(w) for all
>artially orders all F'-measurable
*F and 8§ is an F'-measurable
Yy assumption L(8) = L(d(F")). I
nd 8(w) =’ d(F')(w) for all w. It
F} with respect to <”". In parti-
> F', G C F}. Thus, Proposition 1
ndition for rings.

X E

sition 3

d(F)) = d(F,) (5.1)"';;

F, implies o(d(F,))C FFNFC
F). Likewise, d(F,) = d(F N F2)-

F2 > d(F) = d(F)

o
E .
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Conve_rsely, assume that
old(F)) v o(d(F)) C F,N = d(F) = d(F) (E.2)

is true. Then F, C F, implies F, = F, N F,. Hence, o(d(F))) C F; implies
old(F)) v o(d(F,))C F, = Fi N F,. Because of Eq. (E.2), it follows that
d(F\) = d(F>). Thus, the condition

o(d(F))C K, CF = d(F) = d(F)

is true.

APPENDIX F

Proof of Theorem 4

The proof of Theorem 4 proceeds in various steps: First we describe
precisely the evolution of the estimation process according to each team
member’s model, and determine what each member’s model predicts.
Then, compare these predictions with what happens in reality. Both
Alpha and Beta can describe the evolution of the estimation process
according to their own view of the world as follows: Let a}and B! be the
estimates of Alpha and Beta at time according to i's perception
{i = Alpha, Beta). Then,

a;=d'(A, Bi, B, ..

Bi=d'(B, ai, a}, .. (F.2)

where d denotes that the estimates are formed according to the rule d

and the probability measure p’ induced by the distribution P' on (.

Equations (F.1) and (F.2) considered for all ¢ and for all w ¢ () describe

the evolution of the estimation process according to member i’s view of

the world. To determine what Alpha and Beta predict about the outcome

of the estimation process in terms of their own models consider the
following o-fields

Fr=a(A, B, B, ...

Fi® = o(B, ai, as, ..

- Bis) (F.1)

L al),

’ ﬁi’l)

Loal)

(i = Alpha, Beta) (F.3)

The o-fields Fi*, Fi® describe the view of member i about the in-
formation available to Alpha and Beta after the initial observations have
been taken and ¢ tentative decisions have been exchanged. The o-fields
F* and Fi? evolve dynamically as follows:

Fi%i= F*v o(d(F i)

F&=FPvo(d'(Eit) 4
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with initial condition
Fir=A
Fi? = B.
We can view Egs. (F.4) and (F.5) as a dynamic system defined on the R
lattice of o-fields contained in F. The lattice operations are v and A
. : : . ’
where v and » are the jomn and meet operations on o-fields. The
maximum o-fiecld is Av B and the minimum is the trivial one. Fo=
i@, 2} Equation (F.4) generates increasing sequences of o-fields. Since
A v B s finite by assumption, and

it follows that eventually
Fi*=
for all ¢ = t!y (for some 1, =0) and
FP=F®
for all 1=ty (for some i = 0). Let
T' = max (t}y, ty).
Then, for 1> T
FA=Fiay a(d'(F™®))
F'® = FB y o(d'(F4)
or equivalently,
o(d'(F®) c F4
a(d'(F*) C F*®,
Consequently,
o(d'(F*®) C F4 N Fis C pi8
and
o(d'(F)C FAN F® Cc F'A.

Since d satisfies the agreement conditions, (F.12) implies that

dl{qu) = de(fm n E:B) = da{f'm) {Fl3) £ _. ;

Thus, both Alpha and Beta predict that the estimates will converge and .
agree after a finite number of steps. 3




Y
3.

: lattice operations are v ang A
*

eet operations on o-fields. The -

I

vnimum is the trivial one, Fo

1sing sequences of o-fields, Since

CAVEHB

CAvVB, (F.6)
A (F.7)
8 (F.8)
O G) (F.9)
di(F'8))
HE) (F.10)
CFA

FiB. (F.11)
. FBC FiB

FBCF4 (F.12)

s, (F.12) implies that

the estimates will converge and

(F.S)ﬂg",,'

1 dynamic system defined on the '
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In reality, the following is happening: At ime = 1 Alpha’s estimate is
a,=d'(A) (F.14)

(where A is Alpha’s observation). The message 4, is transmitted to Beta.
Beta interprets this message according to his own view of the world, that
is. he considers that the realization A of A is such that

a = af =d*(A). (F.15)

Furthermore, for a consistent interpretation of the data it is required that
P8(a, =af)>0. (F.16)

At 1 =2 Bewd’s estimate is
Bi=d*B, &) (F.17)

(where B is Beta’s observation), and this estimate is transmitted to Alpha
who interprets it in terms of his own model, that is, he considers that the
realization B of B is such that

Bi=pBi'=d"(B, a. (F.18)
For a consistent interpretation of the data it is required that
PHB{ =B >0. (F.19)

In general, when Alpha receives message By he interprets it in terms of
his own view of the world, that is, he considers that the realization B of B

is such that

B‘K=B2=dI(B’7 &ly &27'~-v&l{) (F.20)
Then, Alpha generates
a—K+1 =d‘(/i, B—h B—2a- -"B_K)7 (FZI)

which he sends to Beta. For a consistent interpretation of all the
messages received by Alpha and Beta, it is required that at any time t

PABr=pB, 1sl=n>0

and

PB(af=a, 1=l=pn>0. (F.22)

The following result about the evolution of the probabilities of (F.22) is
true.

After a finite number of steps s*, either

PA(B;A = El’

Proposition F.1.

Islss=0 (F.23)




PYB' =B, 1=l=s5Y=1.
Moreover, for all s > 5
PUB =B lsl=s)=PABr=43. 1=
Similar results hold for PP(af = @, 1<1<).
Proof. The result follows directly from the fact that cony ergence and
agreement are predicted to occur in a finite number of steps by both

models. The time s is given by Eq. (F.1).
g
Based on the previous proposition we can complete the proof of
Theorem 4 as follows: If
PYBir=p 1
PPlaf=a 1=l=0>0

are true for all 1<s%, 5% respectively, and Eq. (F.24) is true for both
P?(-) and P®(-), then because of Eq. (F.13) and the rules by which the
messages are interpreted

d'A‘I f-‘_‘-\A) - da(fiaa) e dﬂ[fjﬂ!!) - d"l f-:m)

for all I=max(s* s®) and the estimates of Alpha and Beta agree
asymptotically. If, on the other hand, Eq. (F.23) is true at some time ¢ for
either Alpha or Beta, then, at that time Alpha or Beta realize that the
sequence of received messages is impossible, or more reasonably, Alpha
or Beta must conclude that the two models P* and P® are inconsistent.

NOTES

1. Research supported in part by ONR Contract NO00O14-80-C-0507 and JSEP Con-
tract F49620-79-C-0178. B

2. Note that v is the join operation on o-fields: F, v F; is the smallest o-field containing
F, and F,.
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