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Abstruct- Detection and isolation of failures in large, com- 
plex systems is a crucial and challenging task. The increasingly 
stringent requirements on performance and reliability of com- 
plex technological systems have necessitated the development 
of sophisticated and systematic methods for the timely and 
accurate diagnosis of system failures. We propose a discrete-event 
systems (DES) approach to the failure diagnosis problem. This 
approach is applicable to systems that fall naturally in the class of 
DES; moreover, for the purpose of diagnosis, continuous-variable 
dynamic systems can often be viewed as DES at a higher level 
of abstraction. We present a methodology for modeling physical 
systems in a DES framework and illustrate this method with 
examples. We discuss the notion of diagnosability, the construc- 
tion procedure of the diagnoser, and necessary and sufficient 
conditions for diagnosability. Finally, we illustrate our approach 
using realistic models of two different heating, ventilation, and air 
conditioning (HVAC) systems, one diagnosable and the other not 
diagnosable. While the modeling methodology presented here has 
been developed for the purpose of failure diagnosis, its scope is 
not restricted to this problem; it can also be used to develop DES 
models for other purposes such as control. A detailed treatment of 
the theory underlying our approach can be found in a companion 
paper [27]. 

I. INTRODUCTION 

ETECTION and isolation of failures in large, complex D systems is a crucial and challenging task. Most practical 
systems employ some means of fault detection, the sim- 
plest of such schemes involving threshold logic, alarms, and 
warning systems. The increasingly stringent requirements on 
performance and reliability of complex technological systems, 
however, have necessitated the development of sophisticated 
and systematic methods for the timely and accurate diagnosis 
of system failures. The problem of failure diagnosis has 
received considerable attention in the literature of reliability 
engineering, control, and computer science and a wide vari- 
ety of schemes have been proposed. Failure diagnosis using 
fault trees has been studied in detail by reliability engineers 
[171, [ I  61, 1321, 181, [34]. Quantitative, analytical-model-based 
methods have been extensively studied by control systems 
researchers (see [lo], [33] and [35] and references therein; 
also see [3] and [31]) while expert systems and model- 
based reasoning schemes for diagnosis have been proposed 
by computer scientists (see, e.g., 151, [201, [91, [71, [61, 1221, 
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[ l l ] ,  1231, and [26]). A detailed discussion of several of 
these methods has appeared in 1241. For a brief overview 
of the salient features of the aforementioned methods, see 
[28]. Recently, the problem of failure diagnosis has also been 
studied in the framework of discrete-event systems (DES) 
141, [141, [181, 1191, [291, [34]. In 1181 and [19], the authors 
propose a state-based approach to diagnosability; they study 
the problems of off-line diagnosis and on-line diagnosis where 
the basic idea of the diagnostic procedure is to “test and 
observe.” Extensions of the above work can be found in 
[4] where the authors study testability of DES. In [14], the 
authors present a template monitoring scheme based on timing 
and sequencing relationships of events for fault monitoring in 
manufacturing systems. In [34], the authors propose a Petri net 
based method for failure diagnosis of manufacturing systems 
which uses Petri net models for failure detection and fault 
trees for failure isolation. 

We propose in this paper and in the companion paper [27] 
a DES approach to the failure diagnosis problem that expands 
on the work in [29] and is different from the DES-based 
approaches mentioned above. DES are characterized by a 
discrete-state space of logical values and event driven dynam- 
ics. Most large scale dynamic systems can be viewed as DES at 
some level of abstraction. Hence, the proposed method of fault 
diagnosis is applicable not only to systems that fall naturally 
in the class of DES (communication networks and computer 
systems, for instance), but also to systems traditionally treated 
as continuous variable dynamic systems and modeled by 
differential equations. One of the major advantages of the 
proposed method is that it does not require detailed in-depth 
modeling of the system to be diagnosed and hence is ideally 
suited for the diagnosis of large complex systems like heating, 
ventilation and air conditioning (HVAC) units, power plants, 
and semiconductor processes. Other application areas include 
automated manufacturing systems like automobile manufac- 
turing where systematic diagnostic procedures are necessary 
to check equipment integrity before they leave the production 
line. Fig. 1 illustrates the overall system architecture which 
contains in it a DES-based diagnostic subsystem. We assume a 
two-level system architecture. At the lower level is the system 
itself with its set of controllers; these low-level controllers 
typically consist of equipment controllers and multivariable 
controllers. The upper level consists of the supervisor, which 
performs the tasks of control and coordination of the low-level 
controllers, failure diagnosis, failure recoveryhystem recon- 
figuration following failure identification, and coordination of 
all of these subsystem operations. The interface between the 
two layers conveys information on occurrences of observable 
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Fig. 1. The conceptual system architecture. 

events in the system to the supervisor and communicates the 
commands issued by the supervisor to the system. 

Our approach to failure diagnosis involves two major steps: 
developing a discrete-event model of the system to be diag- 
nosed followed by construction of the diagnoser. The discrete- 
event model that we develop captures both the normal and the 
failed behavior of the system. The failures are modeled as 
unobservable events and the objective is to infer about past 
occurrences of these failures on the basis of the observed 
events. The diagnoser is a finite-state machine (FSM) built 
from the system model. This machine performs diagnosis 
when it observes on-line the behavior of the system. The 
diagnoser provides estimates of the state of the system after 
the occurrence of every observable event. In addition, states 
of the diagnoser carry failure information and occurrences of 
failures can be detected (with a finite delay) by inspecting these 
states. Fig. 2 illustrates the basic paradigm of our approach. 
The top part of this figure shows the various steps involved 

I System Model and Observations I 

Observer -1 Estimate of Current System State 
1 I 

I 

Inferencing About Past Failure Events 
I 

Potential Past Failures d 
Failure Identification fi 

I Message to Coordinator I 

Fig. 2. The diagnostic process. 

in failure diagnosis; all these steps are to be performed by 
the diagnoser, as shown in the bottom part of Fig. 2. This 
approach to diagnosis is appropriate for failures that involve 
significant changes in the status of system components but do 
not necessarily bring the system to a halt. 

One of the main contributions of this paper is a pre- 
cise methodology for modeling physical systems in a DES 
framework. The system is assumed to consist of several 
distinct physical components and equipped with a set of 
sensors. Starting from discrete-event models of the individual 
components and from the discrete-valued sensor maps, we 
present a systematic procedure for generating a composite 
model which captures the interaction among the components 
and also incorporates in it the sensor maps. This composite 
model is the DES on which we perform diagnostics. While 
this approach to modeling has been developed for the purpose 
of diagnostics, its scope is not restricted to this problem; the 
model building methodology presented here can be used to 
develop DES models of any real system for other purposes 
such as control. 

Aside from the modeling methodology, the rest of the 
theoretical developments underlying our approach to failure 
diagnosis are presented in [27]. In [27] we introduce two 
related notions of diagnosability of a language generated by 
a DES. The first definition, referred to as diagnosability, 



SAMPATH er al.: FAILURE DIAGNOSIS USING DISCRETE-EVENT MODELS 107 

is more stringent than the second one, which we refer to 
as I-diagnosability. Roughly speaking, a system is said to 
be diagnosable if it is possible to detect, with finite delay, 
occurrences of certain specific unobservable events, namely, 
the failure events. In [27] we present a formal construction 
procedure of the diagnoser followed by necessary and suffi- 
cient conditions for diagnosability and I-diagnosability. These 
conditions are stated on the diagnoser or variations thereof. 
Thus, the diagnoser serves two purposes: 1) on-line detection 
and isolation of failures and 2) off-line verification of the 
diagnosability properties of the system. 

In this paper, we restrict our attention to the notion 
of I-diagnosability introduced in [27]. Section I1 describes, 
with illustrative examples, model building for diagnosis. In 
Section 111, we present some of the main results of [27]; 
we review the notion of I-diagnosability, the construction of 
diagnosers, and the necessary and sufficient conditions for 
I-diagnosability. Next, we illustrate our approach to failure 
diagnosis with two examples of HVAC systems. The DES 
models of these systems, the corresponding diagnosers and 
their analysis are presented in Section IV. In Section V, we 
provide a brief comparison of the proposed method with some 
of the other approaches to failure diagnosis mentioned earlier. 
Finally, in Section VI we summarize the main results of this 
paper. 

11. MODEL BUILDING FOR DIAGNOSIS 

Suppose that the system to be diagnosed has N individual 
components; typically, these components consist of equip- 
ment and controllers. We first build DES models for these 
components. Let 

refer to the FSM (see, e.g., [25]) model of the ith component; 
here X ,  is the state space, C, is the event set, 6, is the 
transition function, and 20, is the initial state of G,. The states 
in X ,  and the events in C, reflect the normal and the failed 
behavior of the zth component. Some of the events in E, are 
observable, i.e., their occurrence can be observed, while the 
rest are unobservable. Typically, the observable events include 
commands issued by the supervisor while the unobservable 
events include failure events. 

Next, we compose these individual models using the stan- 
dard synchronous composition operation on state machines 
(see, e.g., [ 151). The synchronous composition procedure, 
recalled below, is used to model the joint operation of two or 
more DES given their individual FSM models. Consider two 
discrete-event systems GI  = ( X I ,  C1, 61, ZOI) and G2 = 
( X 2 ,  C2, 62, 1~02). We denote by e,(%) the active event set 
of G, at state x, i.e., the set of all transitions of G, defined 
at state x. Let G = ( X ,  C ,  6, z0) denote the synchronous 
composition of G1 and G2. Then 

c = c1 U C2 
x = X1 x X2 

IC0 = (201, 5 0 2 )  

Thus an event U which is common to both G1 and Gz is 
possible at state (x1, 2 2 )  of G only if U is in the active event 
set of GI at x1 and in the active event set of Gz at 22. In this 
case, both systems GI and G2 are assumed to execute o. On 
the other hand, if o is an event possible in G1 (Gz) and it 
is not in E2 (El),  then only GI  (Gz) executes the transition 
0. It is not difficult to see that the synchronous composition 
procedure described above can be extended to model the joint 
operation of any number of DES. 

Let 

G = ( X ,  2, 8,2i.o) 

denote the synchronous composition of the component models 
G;, i = 1, + . .  , N .  Observe that we need only consider the 
accessible part of G. G then models the joint operation of 
these components. Here 

( 3 )  

Given the set of M sensors of th_e system of interest, we 
next identify the sensor maps hj : X -+ Yj, j = 1, . . . , M 
where Yj denotes the discrete set of possible outputs of the 
j th sensor. Define 

M 

Y = n y ,  (4) 
j=l 

and let h :  X -+ Y denote the global sensor map defined as 
follows: 

h(z)  = (h1(z), hz(z),...,hnir(z)). ( 5 )  

Finally, we transform G = ( X ,  2, 8, 20) to G = 
(X , -C,  6, 20) with xo = 20 by redefining the trans_itions 
of G as follows. Let 6(z, U )  = x’ where x, 5’ E X and 

2. 
If r is observable (typically a command event), then 
rename U in the transition as (0, h(z’)) and let 
S(x,  (a, h(x’))) = d. The new event (0, h(x’)) is 
observable in C. 
If r is unobservable and if h(x) = h(x’), then o is 
left unchanged in G and s(z, o) = d. The event o is 
treated as unobservable in C. 
If g is unobservable and if h(z )  # h(x’), then re- 
place the transition s “ ( ~ ,  g) = x’ by the following two 
transitions: 
a) 6(z, g) = z,,, and 
b) S(xneW, (h(z)  -+ h(5’))) = 2’ 
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Fig. 3. Component models for Example 2.1 

where x,,, denotes a newly introduced state and (h(x) + 

h(x’)) denotes the change in sensor readings corresponding 
to states x and 2’. The first transition 0 is unobservable in 
C while the second (h(x) 4 h(z’)) is observable. 
For the purpose of clarity, we henceforth denote all events 

in the composite model G within braces, (. . .). Therefore the 
event set C of G consists of composite events of the following 
three types: 

1) (U,  h(x’)): observable; 
2) ( U ) :  unobservable; and 
3) ( h ( z )  4 h(x’)): observable. 
Let X,,, denote the set of all new states x,,, introduced 

in Step 3) above. Then 

x = x U x,,,. (6)  

This completes the model building procedure for diagnosis. 
The system to be diagnosed is now represented by the discrete- 
event model 

G = ( X ,  C ,  6, ~ 0 ) .  (7) 

Note that the model G accounts for the normal and failed 
behavior of the system. The observable events in this system 
may be one of the following: commands issued by the super- 
visor and sensor readings immediately after the execution of 

the above commands, and changes of sensor readings. The 
unobservable events may be failure events or other events 
which cause changes in the system state not recorded by 
sensors. 

We note at this point that the proposed approach to diagnosis 
is not limited to the case of equipment and controller failures. 
Sensor failures, too, can be handled in this framework by 
simply treating the sensor as an additional component of the 
system. In other words, we develop in addition to the equip- 
ment and controller models, explicit discrete-event models, 
which include both normal and failed states, for those sensors 
that can fail. 

We now present two examples to illustrate the above mod- 
eling procedure. These examples also illustrate that in the 
proposed framework, the modeling can be done at different 
levels of granularity. In the first example, we model the 
dynamic behavior of a system over its entire range of operation 
including start-up and shutdown procedures. In the second 
example, we model deviations from the steady state of a 
system. 

Example 2.1: Consider an elementary HVAC system 
consisting of a pump, a valve, and a controller. Fig. 3 
depicts the individual component models G,,i = 1,2,3, 
of the valve, pump, and controller, respectively. 
The valve has four failure events: STUCK-CLOSED-1, 
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h( PFOFF, VC, 0 )  = NP, NF 
h( PFOFF, VO, ) = NP, NF 
h( PFOFF, SC, ) = NP, NF 
h( PFOFF, SO, ) = NP, NF 
h( PFON, VC, ) = PP, NF 
h( PFON,VO,*)  = P P , F  
h( PFON,SC,*)  = PP,NF 
h( PFON,SO,o)  = P P , F  

PON PFOFF PFON 
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vc 
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Fig. 4. Synchronous composition of the component models for Example 2.1. 
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STUCK-CLOSED-2, STUCK-OPEN-1, and STUCK-OPEN-2. 
The states SC and SO represent the stuck-closed and the 
stuck-open status of the valve, respectively, while the 
states VC and VO denote the closed-normal and open- 
normal status, respectively. Likewise, the pump has four 
failure events: PUMP-FAILED-OFF-1, PUMP-FAILED-OFF-2, 
PUMP-FAILED-ON-1, and PUMP-FAILED-ON-2. The states 
PFOFF and PFON represent the failed-off and failed-on status 
of the pump while the states PON and POFF represent the 
normally-on and off status. The only unobservable events in 
this system are the failure events of the pump and the valve. 

The system G in Fig. 4 is obtained by the synchronous 
composition of the valve, pump, and controller models of 
Fig. 3. Both the accessible and the inaccessible states of the 
system are shown in this figure. The inaccessible states are 
subsequently dropped. Dotted lines in this figure indicate un- 
observable events while solid lines indicate observable events. 
For the sake of clarity, some of the events in this figure are 
shown abbreviated. For instance, the event STUCK-CLOSED-1 
is shown as SC1, the event PUMP-FAILED-ON-:! as PFON2, 
and so forth. 

Next, assume that there are two sensors in the system, a 
pressure sensor on the pump and a valve flow sensor. Let 

Yl = {NP, PP} and Y2 = {NF, F} denote the set of outputs 
of the pressure sensor and flow sensor, respectively. NP and PP 
denote no pressure and positive pressure, respectively, while 
NF and F denote no flow and flow, respectively. Table I lists 
the global sensor map h. Note that the map h is defined only 
for the accessible states of G in Fig. 4. Also, h does not depend 
on the state of GJ, the controller, which is indicated in the 
table by the O S .  

The final composite model G is given in Fig. 5. The shaded 
circles in Fig. 5 denote the additional states x,,,; as before, 
observable events are indicated by solid lines and unobservable 
events by dotted lines. The table in Fig. 5 lists the events in 
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cy' = <OPEN-VALVE, PP, F > 
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0'' = <CLOSE-VALVE, PP, NF > 
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p' = <START_PUMP, PP, NF > 
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p = (NP-PP, NF+F> 

11' = <PP+NP. F+NF> 

Fig. 5. The composite model for Example 2.1 

this composite system obtained as a result of the transition 

Example 2.2: Consider the nitric acid cooling system 
shown in Fig. 6 (cf. [17]). We now present discrete-event 
models for this system that capture deviations of its behavior 
about steady-state conditions. Steady state here refers to 
operating conditions when the temperature of the nitric acid 
leaving the system is maintained at the desired set-point 
value. The individual models of the various components in 
the system are shown in Fig. 7. 

Note that, as in Example 2.1, the component models include 
both normal and failure events. Also note that Fig. 7 includes 
a "load" model. We assume that all minor disturbances which 
cause a deviation of the output temperature result in either 
of the two events, ABOVE-SP or BELOW-SP, depending on 
the direction of the deviation. If the temperature sensor is 
normal, then it reacts to the ABOVE-SP and BELOW-SP 

renaming procedure described above. 
events by sending a SENSOR-HIGH and a SENSOR-LOW signal, 
respectively, to the controller. If the temperature controller 
is normal, then it reacts to the sensor signals SENSOR-HIGH 
and SENSOR-LOW, by issuing the commands, OPEN-VALVE 
and CLOSE-VALVE, respectively, to the cooling water valve. 
If, however, either of these two components is failed, then 
deviations of the output temperature cause no change in the 
status of the system components. The control valve and the 
cooling water valve are initially assumed to be in the states 
V1I and V21, respectively. The event, HIGH-WLET-PR, which 
corresponds to an abnormal increase in the pressure at the 
inlet, causes the control valve to open completely, resulting 
in state VlCO from the initial state V11. We assume that the 
system is equipped with a nitric acid shutdown system which 
stops the flow of incoming nitric acid whenever the event 
PUMP-SHUTDOWN occurs. This corresponds to the change of 
state of the control valve from the initial state V1I or the 
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Fig. 6. A nitric acid cooling system. 

open state VlCO to the completely closed state, VlCC. If 
the event NAS-FAILURE, which corresponds to failure of the 
nitric acid shutdown system, occurs, however, then the control 
valve remains open (in the failed states VlFI or VlFO) even 
after PUMP-SHUTDOWN occurs. The states VlFI and VlFO 
can be thought of as equivalent to the valve being stuck 
open. Likewise, the event LOW-AIR-PR, which corresponds 
to the major disturbance “low air pressure” at the cooling 
water valve, causes the cooling water valve to get into a 
completely closed state at which it gets stuck and responds 
to no further open or close valve commands. The event 
PUMP-SHUTDOWN causes transitions of the cooling water valve 
into its completely closed state V2CC. The major external 
disturbances, HIGH-INLET-PR and LOW-AIR-PR, cause a large 
deviation in output temperature; we assume that the controller 
cannot compensate for these large deviations. Note, finally, 
that we do not explicitly model the heat exchanger. 

Suppose next-that there are two sensors on the system: a 
valve stem-position-indicator mounted on the cooling water 
valve and a temperature sensor. We assume that the tempera- 
ture sensor can fail and hence we develop an explicit model 
of this sensor. In Fig. 7, SI, SL, and SH correspond to normal 
states of the temperature sensor, and SF corresponds to its 
failed state. In addition to the outputs of the two sensors 
mentioned above, we assume that we have a third measurement 
available, namely the output of the controller. 

As before, it is straightforward to obtain the synchronous 
composition of the component models in Fig. 7. This FSM 
has 368 states and 1486 transitions. (It is not shown here due 
to space limitations.) States of the synchronous composition 
are tuples of the form ( 5 1 ,  z2, 2 3 ,  5 4 ,  z5, 5 6 )  where z1 is a 
state of the cooling water valve, 52 is a state of the control 
valve, z3 is a state of the pump, 2 4  is a state of the load model, 
5 5  is a state of the temperature sensor, and 5 6  is a state of 
the temperature controller. 

The next step in the modeling procedure is to ob- 
tain the global sensor map for the system. Let YI = 
{ZERO, UP, DOWN} denote the set of outputs of the valve 
stem-position-indicator. Here ZERO refers to the steady- 
state position of the valve, UP denotes that the valve is 

__ 

more open than at steady state, and DOWN denotes that 
the valve is less open compared to the steady-state position. 
The set of outputs of the temperature sensor is given by 
U, = {ZERO, HIGH, LOW}, where ZERO denotes no 
deviation from the set point value of the temperature of 
the output nitric acid stream, and HIGH and LOW denote 
positive and negative deviations, respectively. We assume 
that when the sensor fails, its output remains at ZERO. The 
controller output is given by Y3 = {ZERO, HIGH, LOW}, 
where ZERO, HIGH, and LOW denote zero, positive, and 
negative deviations of the controller output from the steady- 
state value. As in the case of the temperature sensor, the 
only possible output of the controller when it fails is ZERO. 
Table I1 illustrates the output maps for the two sensors and 
the controller. The global sensor map is simply the union of 
the individual sensor maps and can be obtained as in (5) .  The 
entries in Table I1 are to be interpreted as follows: Consider, 
for example, the entry hl (V2C, 0 ,  0 ,  0 ,  0 ,  0 )  = DOWN. This 
means that the output of the valve stem-position-indicator is 
DOWN when the cooling water valve is in the state V2C, 
regardless of the states of the other components. The entry h2 
(V2CC, VlCC, PS, 0 ,  SI/SL/SH, 0 )  = ZERO means that if 
the cooling water valve is in state V2CC, the control valve is 
in state VlCC, the pump is in state PS, and the temperature 
sensor is not failed, then the output of the temperature sensor is 
ZERO, and so on. Also, the entry V 2 W 2 0  is to be interpreted 
as meaning that the control valve could be in state V21 or in 
state V20, and so on. 

The composite system model can be obtained following 
the procedure discussed before. This FSM has 646 states and 
1764 transitions. Again, it is not shown here due to space 
limitations. 

111. DIAGNOSABILITY AND DIAGNOSERS 

In this section, we review some of the main results in 
[27], namely the notion of I-diagnosability, the construction 
procedure of the diagnoser, and the necessary and sufficient 
conditions for I-diagnosability, and illustrate these ideas with 
the simple pump-valve-controller example introduced in the 
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Component models for the nitric acid cooling system. Fig. 7. 

preceding section. In Section IV, we will apply these results 
and the modeling methodology of Section 11 to two more 
complex HVAC systems. The reader is referred to [27] for 
a formal treatment of the ideas described in this section. 

A. The Notion of I-Diagnosability 

Let G = (X, E, S, 20) represent the discrete-event model 
of the system to be diagnosed. The behavior of this DES is 
described by the prefix-closed language L(G) generated by G 
[25]. Henceforth, we shall denote L(G) by L. We assume for 
simplicity that L is live, i.e., there is at least one transition 
defined at each state in X .  

Some of the events in C are observable, i.e., their occurence 
can be observed by an external agent while the rest are 
unobservable. Thus the event set C is partitioned as C = 

8 
ABOVE-SP, BELOW-SP 

TEMPERATURE SENSOR 

C,UEu0, where C, represents the set of observable events 
and E,, the set of unobservable events. Let Cf C C denote 
the set of failure events which are to be diagnosed. We assume, 
without loss of generality, that Cf C E,,, since an observable 
failure event can be trivially diagnosed. Our objective is to 
identify the occurrence, if any, of the failure events given 
partial event observations, i.e., when we observe only part of 
the traces generated by the system. Since detection of failure 
events is based on observable transitions of the system, we 
assume that G does not generate arbitrarily long sequences of 
unobservable events. 

Roughly speaking, a system is diagnosable if it is possible 
to detect with a finite delay occurrences of failure events 
using the record of observed events. A system is said to 
be I-diagnosable if it is possible to diagnose failures, not 
always, but whenever the failure events are followed by 



SAMPATH et al.: FAILURE DIAGNOSIS USING DISCRETE-EVENT MODELS 113 

TABLE I1 
SENSOR MAPS FOR THE NITRIC ACID COOLING SYSTEM 

hl (  v21, *, *. *, *, * )  = ZERO 

h,( v2c, *, *, *. *, * )  = DOWN 
h,( v2cc, *, *, *, *, *) = DOWN 
h l (  VZSC, *, 0 ,  e ,  *, 0 )  = DOWN 
hz( V21, VII/VlFI, PI, LI, SI, CI/CF) = ZERO 
hz( V2I/V2O/V2C, VlI/VlFI, PI, LL, SL, CI/CF/CH) = LOW 
hz( V2I/V2O/V2C, VlI/VlFI, PI, LH, SH, CI/CF/CL) = HIGH 

hz( V2I/V2O/V2C, VlI/VlFI, PI, LH, SI, CH) = HIGH 
hz( V2C, VlI/VlFI, PI, LH, SI, CI/CF) = ZERO 
h2( V20,  VlI/VlFI, PI, LL, SI, CI/CF) = ZERO 

h ~ (  VZI/VZC, VII/VlFI, PI, LH, SI, CF) = HIGH 
hz( *, VlCO/VlFO, PI, , SI/SL/SH, ) = HIGH 
hz( e, VlF/VlFO, PS, , SI/SL/SH, ) = HIGH 
h2( VZSC, VlI/VlFI/VlCO/VlFO, PI, *, SI/SL/SH, ) = HIGH 
hz( V2CC, VlCC, PS, *, SI/SL/SH, ) = ZERO 
h(*, *, *, *, SF, = ZERO 
h(*, ., *, *, *, CI) = ZERO 
h3(*, *, *, *, *, CH) = HIGH 

h3(*, e, *, *, *, CF) = ZERO 

hl( v20, *> *, *, *, *) = UP 

hz( V2I/V2O/V2C, VlI/VIFI, PI, LL, SI, CL) = LOW 

hz( V2I/V20, VlI/VlFI, PI, LL, SI, CF) = LOW 

h3(*, *, *, *, *, CL) = LOW 

certain observable indicator events that are associated with 
the failures. The notion of I-diagnosability is motivated by 
the following physical consideration. Consider, for example, 
an HVAC system with a controller unit. In the normal mode 
of operation, the controller responds by issuing the command 
“open valve” whenever it senses a heating load on the system. 
Likewise, it issues the command “close valve” when the load 
is removed. Assume that when the controller fails it does not 
sense the presence of any load on the system and hence does 
not issue any commands to the valve. Suppose that during 
operation, the controller does fail and suppose further that it is 
possible for the system to execute an arbitrarily long sequence 
of events, which does not involve any of the valve commands. 
Under such conditions, it is obvious that one cannot diagnose 
any failure of the valve. We do not want to classify this 
system as nondiagnosable under these conditions, however. We 
associate the indicator events “open valve” and “close valve,” 
respectively, with the valve failure events “stuck-closed” and 
“stuck-open,’’ and require the system to execute the “open 
valve” event or the “close valve” event before deciding on 
its diagnosability. The system is considered I-diagnosable if 
after the execution of the corresponding indicator events it 
is possible to detect valve failures, while it is termed not I- 
diagnosable if even after the indicator event is executed the 
corresponding valve failure remains undetectable. To reiterate, 
I-diagnosability requires detection of failures only after the 
occurrence of an indicator event corresponding to the failure. 

Further, we may not be required to identify uniquely the 
occurrence of every failure event (irrespective of whether the 
failure is followed by an indicator event or not). We may 
simply be interested in knowing if one of a set of failure events 
has happened, as for example, when the effect of the set of 
failures on the system is the same. In this case we classify the 
set of failures into different classes corresponding to different 
failure types and require unique identification not of the failure 
event itself, but of the type of failure whenever such an event 
occurs in the system. 

With the above requirements in mind, we associate to every 
failure event in Cf ,  one or more observable indicator events. 
Let C I  C_ CO denote the set of indicator events and let 
I f :  Cf -+ 2’’ denote the mapping between failure events 
and indicator events. Next, we partition the set of failure events 
into m disjoint sets corresponding to different failure types 

such that, for each i = 1,. . . , m 

and define 

(9) 

We now have a set of observable events I ( C f , )  associated with 
every set Cf,  of the partition. Let 1Tf denote the partition on 
C f .  Hereafter, whenever we write that “a failure of type F, 
has occurred” we will mean that some event from the set Cf ,  
has occurred. 

The notion of I-diagnosability can then be described more 
formally as follows. Let stl be any trace generated by the 
system that contains in it a failure event from the set Cf ,  
followed by an indicator event from the set I ( C f z ) .  Let t 2  
be any sufficiently long continuation of stl . I-diagnosability 
then requires that every trace belonging to the language that 
produces the same record of observable events as the trace 
st& should contain in it a failure event from the set Cfz.  This 
implies that along every continuation t2  of stl, one can detect 
the occurrence of a failure of the type F, with a finite delay, 
specifically, in at most n, transitions of the system after stl .  
Hence diagnosability requires that every failure event leads to 
observations distinct enough to enable unique identification of 
the failure type with a finite delay, Alternately speaking, the 
observable event set should be rich enough to permit unique 
identification of each type of failure. 

The following example illustrates the choice of indicator 
events and the partition nf for a physical system. 

Example 3.1: Consider the HVAC system of 
Example 2.1. The set of failure events of this system 
is Cf ={ (STUCK-CLOSED-I), (STUCK-CLOSED-2), 
(STUCK-OPEN-1) , (STUCK-OPEN-2), (PUMP-FAILED-OFF-1), 
(PUMP-FAILED-OFF-2), ( PUMP-FAILED-ON- 1 ) , 
(PUMP-FAILED-ON-2) }. The indicator events corresponding 
to these failure events are chosen as follows: 

If (( STUCK-CLOSED-1)) = ff (( STUCK-CLOSED-2)) 

= {(OPEN-VALVE, 0 ,  o)}, 

= { (CLOSE-VALVE, 0 ,  o)}, 

= {(STARTRJMP, 0 ,  o)}, 

= {(STOPJUMP, 0 ,  o)} .  

ff (( STUCK-OPEN-1)) = 1, (( STUCK-OPEN-2)) 

If ((PUMPJAILED-OFF-1)) = ff ((PUMPJAILED-OFF-2)) 

If ((PUMPJAILED-ON-1)) = If ((PUMPJAILED-ON-2)) 

(Here (OPEN-VALVE, 0 ,  0 )  denotes all the composite events in 
Fig. 5 that contain OPEN-VALVE, namely a ,  a’, and a”, etc.). 
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We choose the following partition on Cf:  

Cf1 = { (STUCK-CLOSED-I), STUCK_CLOSED-2)}, 

cf2 = { (STUCK-OPEN-I), STUCK-OPEN-2)}, 

b) If I = { N }  and s contains failure events from Cf, 

c) If I = { N } ,  s contains failure events from Cf,, and 
and Cf3, then I‘ = {F,, FJ} .  

a E I ( C f , ) ,  then I’ = {Ft ,  I%}. 
Cfy = { (PUMPJAILED-OFF-1), PUIVIPJALED-OFFL.~)}, 

Cf4 = { (PUMP_FAILED-ON-1), PUMPJAJLED-ON-2)). 

d) If 1 = {Fz}, s contains no failure events and 

e) I€ 1 = {F,, I,} and s contains no failure events then 
a E I ( C f , ) ,  then I’ = {F,, I%}. 

Therefore, we have I’ = {Fz, IL}. 
I (Cf l )  = {(OPEN-VALVE, 0 ,  e)}, 

I (Cf2 )  = {(CLOSE-VALVE, 0 ,  o)} ,  

I ( C f 3 )  = {(STARTJUMP, 0 ,  e)} ,  

I (Cf4)  = {(STOPJUMP, 0 ,  e)}.  

f) If I = {F,, F3} ,  s contains failure events from 
C f k ,  and o E I ( C f , ) ,  T E { i ,  j ,  k } ,  then 1’ = 

3) Let q 2  be the set of all (z’, 1 ’ )  pairs computed following 
Steps 1) and 2) above, for each (x, I )  in 41. Replace by 
(d, 1’) all (z’, Z’ ) ,  (d, Z”) E q2 such that F, E I’ % 

F, E 2” Vi E { l , . . . , m } ,  I3 E I’ and I3 $Z I”. That is, 
if the same state estimate z’ appears more than once in 
q2 with labels differing only in their I component, we 
eliminate from q2 the pair that does not contain the I 
label. 

{Fz. F3, Fk, IT}. 

We conclude this section by noting that when more than 
one failure of the same type occurs along a trace s of L we 
do not require that each of these occurrences be detected. It 
suffices to be able to conclude, within finitely many events, 
that along s, a failure of the type F, happened. 

We make the following observations on the diagnoser Gfi: 
1) The labels attached to the state estimates carry informa- 

tion on occurrences of failure events (Fz labels) and the 
corresponding indicator events (1, labels). 

from I ( C f , )  follows a failure event from Cf,. The set 

B. The Diagnoser 
Given an FSM model G of the system to be diagnosed, the 

diagnoser for the system is also an FSM denoted by Gi.  A 

where IC, is a state of G and I ,  is a label of the form 
state qd  Of Gi is Of the qd = ‘ I ) ,  . ‘ . ’ (zn) In)} 2) We append the 1, label to any only if an indicator event 

I ;  = { N }  or I ;  = {Fi,F;,,...,F;,} or 

li = {Fi,, Fi,,...,Fi,, Ij , ,  I j 2 , . . . , I j L }  

where { Z l , i 2 , . . . , i k }  2 { 1 , 2 , . . . , m }  , m = IIIfl, and 
{jl, jz,...,j,) c { i l ,  i2,...,ik}.HereNistobeinterpreted 
as meaning “normal,” Fi, i E { 1, . . . , m} as meaning that a 
failure of the type Fi has occurred, and Ii, i E { 1, . . . , m} as 
meaning that an indicator event of the type I; has occurred. 
The diagnoser Gi can be thought of as an extended observer 
for G which gives 1) an estimate of the current state of the 
system after the occurrence of every observable event and 2) 
information on potential past failure occurrences in the form 
of labels as mentioned above. 

We now present a brief summary of the diagnoser con- 
struction procedure. We assume that the system is normal to 
start with and hence define the initial state of the diagnoser to 
be (20, { N } ) .  Let the current state of the diagnoser (which 
is the set of estimates of the current state of G with their 
corresponding labels) be 41 and let the next observed event be 
o. The new state of the diagnoser q2 is computed following 
a three step process: 

1) For every state estimate z in 91, compute the reach due 
to 0, defined to be S(z, 0) = {S(z, so) where s E 

The reach then gives the set of all possible states 
the system could be in after the occurrence of the event 
0 accounting for all possible unobservable events that 
could precede the occurrence of o. 

2 )  Let z’ E S ( x ,  0) with S(z, sa) = 2’. Propagate the 
label 1 associated with z to the label I‘ associated with 
d according to the following rules: 
a) If I = { N }  and s contains no failure events, then 

the label I’ is also { N } .  

of I, labels is always a subset of the set of F, labels in 
any (z, I )  pair in q E Q d .  

3) The F, labels as well as the I ,  labels propagate from 
state to state. 

4) When the diagnoser Gi is run in parallel with the 
system, failures can be detected on-line by inspecting 
the labels associated with the appropriate state of the 
diagnoser. If the diagnoser transitions into a state q such 
that every component of q contains the label F,, then 
we conclude for sure that a failure of the type F, has 
occurred regardless of what the current state of G is. We 
shall refer to such a state q as an F,-certain state. 

5) The I, labels do not carry failure information, per se, but 
c“ry information on whether a particular failure event 
was followed by a corresponding indicator event or not. 
We shall find this information useful in checking for 
I-diagnosability, as we shall see in the next section. 

The following example illustrates the construction of the di- 
agnoser. In several of the illustrations that follow, we represent 
(z, I )  pairs simply as 21 for clarity. 

Example 3.2: Consider the HVAC system of Example 2.1. 
For simplicity, we now assume that the pump has no failures, 
i.e., the only possible events and states of the pump are 
{ START-PUMP, STOP-PUMP} and { P O F F ,  PON}, respectively. 
The valve and the controller models are the same as before. We 
assume, as in Example 2.1, that there are two sensors: a pump 
pressure sensor and a valve flow sensor. The global sensor 
map for this system is given by the left column of Table I. Let 
the desired partition and indicator event set be as follows: 

Cf1 = { (STUCK-CLOSED-1), (STUCK-CLOSED-2)}, 

Cf2 = { (STUCK-OPEN-I), (STUCK-OPEN-2)) 
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---------- -------- -----+---- 

< OPEN-VALVE, 1 W, NF ---- ---------- 

\ 
-- - 

< STOP-PIIMP, NI', NF +--------,--- 

-VALVE, NP, NF> 

1 - (POFE VC, Cl)  2 - (POFF, so, C1) 3 - (POFF, sc, C1) 

4 - (POW, vo, C2) 5 - (POW, so, C2) 6 - (POFF, SC, C2) 

7 - (PON, VO, C3) 8 - (PON, SO, C3) 9 - (PON, SC, C3) 

10 - (POW, vo, C4) 11 - (POFF, so, C4) 12 - (POFF, SC, (-4) 

Fig. 8. The composite system for Example 3.2. 

and 2) a corresponding cycle (of observable events) in G in- 
volving only states that do not carry Fi in their labels 
in the cycle in Gi. 

Example 3.3: Consider the system represented in Fig. 8. 
Inspection of the diagnoser Gi (shown in Fig. 9) for this 
system, reveals the Presence of a Cycle of (F2, I~)-uncertain 
states (bottom left of figure). Corresponding to this cycle, there 
are two cycles in the system: one involving states 1, 4, 7, 
and 10 which appear with an N label in the diagnoser and 

I ( C f 1 )  = {(OPEN-VALVE, 0 ,  o) } ,  

I ( C f 2 )  = {(CLOSE-VALVE, 0 ,  0 ) ) .  

Fig. 8 represents the composite model for this system and 
Fig. 9 its diagnoser. The initial State of the system is chosen 
to be (POFF, VC, Cl)  denoted by state 1 in Fig. 8. 

C. Necessary and SuJjCicient Conditions for I-Diagnosability 

The diagnoser Gi discussed in the last section is used not 
only to perform on-line diagnosis but is used also to verify off- 
line the diagnostic properties of the system. In other words, 
the necessary and sufficient conditions for I-diagnosability of 
a given language can be stated as conditions on its diagnoser. 
The notion of an (E'%, I,)-indeterminate cycle in Gi is the 
most crucial element in the development of the necessary and 
sufficient conditions for I-diagnosability and can be informally 
defined as follows. First, we define an (F,, I,)-uncertain state 
of Gi as a state that contains at least one component which 
carries the labels F, and I,, and at least one component which 
does not carry the label F,. An (F%,  I,)-indeterminate cycle is 
then a cycle composed exclusively of (F,, I,)-uncertain states 
such that there exist 

1) a corresponding cycle (of observable events) in G in- 
volving only states that carry F, and I ,  in their labels 
in the cycle in G i ;  and 

the other involving states 2, 5, 8, and 11, which appear with 
(F2, 12) labels in the diagnoser. Hence this cycle qualifies as 

An (F%,  I,)-indeterminate cycle has the property that if the 
diagnoser enters this cycle, after the occurrence of a failure 
event, then it can continue to remain forever in this cycle. 
Since none of the states in the cycle is F,-certain it is not 
possible to conclude whether a failure event of type F, has 
occurred or not as long as the diagnoser remains in this cycle. 
Finally, since the state components that carry the F, label also 
carry the I ,  label, we know that the failure event was followed 
by a corresponding indicator event when the diagnoser entered 
the cycle. It is then intuitively obvious that such a cycle in 
the diagnoser Gi implies that the system is not I-diagnosable. 
We show in [27] that if the diagnoser Gi has no such cycles 
then, whenever a failure event occurs in the system, followed 
by an appropriate indicator event, the diagnoser will enter an 
F,-certain state in a bounded number of transitions which 
implies that the failure event can be detected with a finite 

an (F2, IZ)-indeterminate cycle. 
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< OPEN-VALVE, NP, 

START-PUMP, PP, 

CLOSE-VALVE, NP, NF > 

< OPEN-VALVE, NP, NF > 

Fig. 9. Diagnoser G i  for Example 3.2 

delay. Thus the absence of ( F z ,  I,)-indeterminate cycles in 
Gi is a necessary and sufficient condition for I-diagnosability. 
Since checking for I-diagnosability amounts to cycle detection 
in the diagnoser and in G, any of the standard cycle detection 
algorithms (which are of polynomial complexity) may be used. 

Example 3.4: The system represented in Fig. 8 is not I- 
diagnosable since its diagnoser G$ contains an (Fz ,  12)- 

In Section IV-B we present another example of a system 
that is not I-diagnosable and discuss its physical significance. 

We conclude this section with a final remark on imple- 
mentation. Recall our earlier comment that the I, labels do 
not directly carry any failure information. They record the 
occurrence of indicator events following the failure events and 
are used solely to test for I-diagnosability. This then implies 
that once it is established that the system is I-diagnosable, one 
may then use a much simpler diagnoser that does not carry 
any I, label for performing on-line diagnosis. This result is 
important from an implementation viewpoint, as the simplified 
diagnoser (denoted by Gd in [27]) will in general have far 
fewer states than Gi .  

indeterminate cycle as discussed in Example 3.3. 

IV. APPLICATION TO HVAC SYSTEMS 

A complete HVAC system in a modem building (or a group 
of buildings) consists typically of a single set of boilers and 
chillers which serves as the primary air conditioning medium 
supplying a large number of air handling systems (AHS’s) 
(see, e.g., [2], [30]). Each AHS, in turn, conditions the air 

supplied to several rooms, based on local thermostats in these 
rooms, whose settings govern the amount of air the AHS 
draws from the main supply. There are several factors favoring 
the design of accurate automated diagnostic mechanisms for 
HVAC systems: 1) Detecting failures in these systems is a 
complex task for a human operator controlling and monitoring 
the system from a central location since the operator has to 
respond to alarms coming from various parts of the system, 
spread over large physical spaces, and identify the root cause 
of the problem. 2) Quite often the number of sensors and 
thus the number of immediately observable failures is limited; 
thus it is necessary to make inferences based on the model of 
the system behavior and on the limited sensor information 
available. 3) Most HVAC system components are hard to 
access and one therefore needs to identify the exact fault 
location before attempting to take any corrective action that 
might involve component inspection or replacement. 

Fig. 10 illustrates part of a complete HVAC system as 
described above. To be more precise, it depicts a single AHS 
with its associated primary conditioning system. We illustrate 
our approach to failure diagnosis by considering two different 
scenarios of this system: in System I, the valve and the 
controller are subject to failures and in System 11, the pump 
and the valve are subject to failures. 

A. System 1 
Consider the HVAC system of Fig. 10 with the component 

models as depicted in Fig. 11. Here V1 and V2 represent the 
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PUMP 

4 c- 
BOILER 

We refer the interested reader to [28] for a complete listing 
of the table. 

VALVE The initial state of the system is chosen to be 
(C1.Vl.FI.Pl.Bl.LO). The only unobservable events in 

v this system are the six failure events partitioned as follows: 
11 ( 

CONTROLLER Cf l  = {(S01), (S02)}, 
Cf2 = {(SCI), (SC2)), 

Fig. 10. (Part of) An HVAC system. Cf4 = { 

closed-normal and open-normal positions, respectively, of the 
valve while V3 and V4 represent the stuck-open and stuck- 
closed positions, respectively. F1, P1, and BI  represent the 
“off’ positions of the fan, pump, and boiler, respectively, while 
F2, P2, and B2 represent their “on” positions. The fan-on state 
F2 is equivalent to “power-on” in lhe system; likewise, F1 
denotes “power-off.’’ The state LO in the load model is to 
be interpreted as unknown load; the load is assumed to be 
unknown when the system is not powered on. The state L1 
represents the absence of heating load on the system and L2 
the presence of a heating load; the events SPI and SPD denote 
an increase in set point (which indicates a demand on the 
heating system) and a decrease of set point (no load on the 
system), respectively. 

The controller is modeled based on the following assump- 
tions: 

In normal mode of operation, the controller issues 
a sequence of commands, OV-PON-BON (open 
valve-pump on-boiler on) whenever it senses a 
load on the system. Likewise, it issues the commands 
CV-POFF-BOFF (close valve-pump off-boiler off) 
when the load disappears. 
When the controller fails off (i.e., when the event CFOFF 
occurs), it does not sense the presence of load on the sys- 
tem and hence does not issue any of the above commands. 
On the other hand, when it fails on (when CFON occurs), 
it always presumes a positive load and consequently, has 
the system running regardless of whether a load is actually 
present or not. 
The controller does not fail during operation, i.e., if it 
does fail, the failures occur at the start of operation. 
The system-power-off command, FOFF, is issued when 
a time-out event occurs, for instance, at the end of a 
working day, but only if the controller senses no load 
on the system. 

The system is assumed to have only one sensor, a valve 
flow sensor, whose outputs are F (flow) and NF (no flow). 

The first step in building the complete system model is 
to perform the synchronous composition of the individual 
component models. The second step is to obtain the composite 
system from the synchronous composition and the sensor 
map for the flow sensor. This system has 104 states; 90 
of these states form the accessible part of the synchronous 
composition while the rest are the new states introduced during 

The indicator events associated with these failure types are 

-I(%) = {(CV, e)}, 

W f 2 )  = {(OV, @)I, 
I(Cf3) = {(CV, @)I, 
W f 4 )  = {(OV, 0 ) ) .  

The diagnoser G: of this system has 158 states. Fig. 12 
illustrates part of Gi. Inspection of Fig. 12 reveals five loops, 
marked A, B ,  C,  D ,  and E.  Loops A and B represent the 
portion of the diagnoser corresponding to normal system 
operation. Loops C,  D,  and E highlight some of the more 
interesting and significant features of the system and the diag- 
noser. We discuss these features in the following paragraphs. 

Let the observed event sequence be (FON, NF) (SPD, NF) 
(OV, NF). The event (SPD, 0 )  denotes that there is no load 
on the system. The controller issues the open valve command, 
however. Knowledge of the system model leads one to the 
immediate conclusion that the controller has failed on. This 
information can be obtained from the diagnoser by noting 
that the state of the diagnoser resulting from the above 
event sequence is F3-certain. Suppose next that the event 
following the above sequence is (PON, NF). The diagnoser 
now transitions into an F2, F3-certain state indicating that the 
valve is stuck closed. No further failures are possible in the 
system and the diagnoser continues to remain in loop D of 
F2, F3-certain states. 

Suppose, on the other hand, that the events (PON, F) 
and (BON, F) follow the sequence (FON, NF) (SPD, NF) 
(OV, NF). The diagnoser now enters into loop C which is 
a loop of F1-uncertain states. A careful examination of this 
loop and of the system model G, (not listed here) reveals 
that loop C is F1-indeterminate. It is obvious by inspection, 
however, that loop C is not ( F l ,  11)-indeterminate since the 
label 11 does not appear in the states constituting this loop. 
This situation has the following physical interpretation. When 
the controller fails on, the valve, pump, and boiler are always 
enabled and as long as the valve is not stuck closed, the valve 
sensor always indicates flow; the actual status of the valve 
may either be open-normal or stuck open and it is not possible 
to distinguish between these two states from observed event 
sequences. Since the close valve command is never issued by 
the controller when it fails on, however, all traces generated by 
the system, in which the controller failed-on event is followed 
by the valve stuck-open event, do not violate the definition of 



118 EEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 2, MARCH 1996 

PUMP VALVE 
PON 

POFF PON 

POFF 

LOAD 

F 

S P D  

FON 

FOFF 

FAN 

cv 

cv. ov 

BON 

BOFF 

BOILER 

v -  

CFON c7 
POFF CV 

CONTROLLER 

Fig. 11. Component models: HVAC System I 

I-diagnosability, because along these traces the corresponding 
indicator event does not follow the failure event. It is precisely 
this information that is provided by the diagnoser by the fact 
that loop C is not (8’1, 11)-indeterminate. 

Let us next consider the event sequence ((FON, NF) 
(SPD, NF) (FOF, NF))*. The corresponding state sequence 
in the diagnoser (loop E )  is a loop of F,-uncertain states for 
i = 1, 2, and 4. Again, careful examination of the diagnoser 

and of the system model reveals that this is an &indeterminate 
loop for i = 1, 2, and 4, which implies that it is not possible 
to determine if the controller has failed off or if any of the 
valve failures have occurred. This situation can be explained as 
follows. As long as the event sequence (FON, NF) (SPD, NF) 
(FOFF, NF) is observed, we know that there is no load on 
the system and hence the system is not activated. Hence, it is 
obvious that it would not be possible to diagnose occurrences 
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Fig. 12. Part of the diagnoser GI, for HVAC System I 

of the above mentioned failures. It is also clear that in this 
case, however, the definition of I-diagnosability is not violated 
since neither of the commands open valve and close valve 
that constitute the set of indicator events, is issued. This 
is reflected in the diagnoser by the fact that loop E is not 
(Fz ,  I%)-indeterminate for any i E { 1, . . . ,4}. 

Examination of all other such cycles in the diagnoser 
(not shown in Fig. 12) reveals that there are no (I?%, 1%)- 
indeterminate cycles. We conclude therefore, by the results 

of Section 111-C, that this system is I-diagnosable. With this 
knowledge, it would then suffice to implement the simpler 
Gd (and not G i )  for on-line diagnosis of the system. The 
diagnoser G d  has 97 states. 

'. System " 
Consider again the HVAC system of Fig. 10. We now 

assume that the valve and the pump can fail while the other 
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PUMP VALVE 

PON cv ov 

cv, ov 
LOAD 

BON 

3 
ON 

CONTROLLER 

Fig. 13. Component models: HVAC System 11. 

components including the controller have no failure events. 
Fig. 13 illustrates the component models of this system. The 
models of the fan, valve, load, and the boiler are the same as 
before. The states P1 and P2 represent the normally off and on 
status of the pump while P3 and P4 denote the pump-failed-on 
and pump-failed-off status. The controller model is the same 
as before except for the fact that it now has no failure events. 

The system is assumed to have two sensors: a pump pressure 
sensor, whose outputs are PPP (pump positive pressure) and 
PNP (pump no pressure), and a valve flow sensor, whose 
outputs are F (flow) and NF (no flow). 

The composite system, obtained using the above component 
models and the sensor maps corresponding to the two sensors, 
has 130 states: 90 of these states are the accessible states of the 
synchronous composition of the component models shown in 
Fig. 13 and the remaining 40 are the new states introduced 
during the transition renaming process. Again, a complete 
listing of the transition table can be found in [28]. 

P D  

The initial state of the system, as before, is chosen to be 
(C1.Vl.Fl.Pl.Bl.LO). The only unobservable events in this 
system are the failure events of the pump and the valve. The 
partition n ~ f  and the corresponding indicator events are listed 
below 

Cfl  = { ( s o l ) ,  (S02)),  
Cf2 = {(SCl),  (SC2)}, 
C f 3  = {(PFONl), (PFON2)), 
Cf4 = {(PFOFFl), (PFOFF2)) 

and 
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Fig. 14. Part of the diagnoser Gf, for HVAC System 11. 

The diagnoser Gfi for this system has 245 states. Fig. 14 
illustrates a part of Gi .  Loops A and B in Fig. 14 correspond 
to the normal operation of the system. It is interesting to 
note that these loops do not include any state such that all of 
the components of this state carry the N label corresponding 
to normal operation. We note, however, that all uncertainties 
regarding occurrences of failure events are resolved in a finite 
number of steps as one proceeds through these loops. 

Suppose that the observed event sequence is (FON, PNP, 
NF) (SPI, PNP, NF) (OV, PNP, NF) (PON, PPP, F). This 
event sequence leads to the state ((41, { N } ) ,  (42, {Fl})} in 
the diagnoser. This implies that right after the above sequence 
of events is observed the system could be normal or the valve 

I< FON, PNP, NF > 

< OV, PNP. NF D 

< POFF, PNP, NF > 

<BOFF, PNP, 8 9 F? F4 

< FOFF, ' PNP* NF > 

< FON, PNP, NF > 

c SPI, PNP, NF > 

could be stuck open. If the next event observed is a change of 
the flow sensor reading from flow to no flow, the diagnoser 
immediately tells us that the valve is stuck closed; this is 
because the state of the diagnoser after the (F -+ NF) event is 
observed is Fz-certain. At this point, however, we do not know 
if the pump is normal or failed-on. If now we observe the event 
(PPP -+ PNP), the diagnoser hits a Fz, F4-certain state and we 
know for sure that two failure events have occurred in the sys- 
tem: a valve-stuck-closed event and a pump-failed-off event. 
No further failures are possible after this and the diagnoser 
continues to remain in loop C of F2, Fq-certain states. 

Suppose next that the observed event sequence is 
(FON, PNP, NF) (SPI, PNP, NF) (OV, PNP, NF) (PON, 
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PNP, NF). A no-pressure reading of the pump sensor 
following the pump on command implies that the pump has 
failed off and correspondingly, the diagnoser transitions into 
a E4-certain state. We note that the diagnoser then continues 
to remain in loop D which is both ( P I ,  Il)-indeterminate and 
(8’2, Iz)-indeterminate, as revealed by a careful examination 
of the diagnoser and the system model. This implies that 
the system of Fig. 13 is not I-diagnosable. This result is 
intuitively obvious. When the pump fails off, irrespective of 
the commands issued to the valve, there will be no flow in 
the system and hence one can make no conclusions about the 
status of the valve. Therefore, the system in Fig. 13 with the 
pump pressure and valve flow sensors is not I-diagnosable. 

Suppose now that the above HVAC system with pump and 
valve failures is equipped with the following set of sensors: 
a pressure sensor on the pump as before, and a valve stem 
position sensor. The latter has two possible outputs, UP and 
DOWN corresponding to the open (stuck-open) and closed 
(stuck-closed) positions of the valve. Construction of the 
diagnoser for this system reveals that it is I-diagnosable. This 
is because, irrespective of the status of the pump, it is now 
possible to detect the status of the valve; response of the stem 
position sensor to the valve commands, open valve and close 
valve, allows us to identify the status of the valve. 

This example illustrates the following important fact: diag- 
nosability of a system depends both on the partition ITf and 
the projection P.  Hence, for a given partition, it is possible 
to change the diagnosability properties of a system by altering 
the observable event set E, which is equivalent to altering the 
set of sensors the system is equipped with. 

Remark: The calculation described in Section IV regarding 
the construction of G, Gd, and Gf, were performed using rou- 
tines from the C library UMDES currently under development 
at the University of Michigan. The software package MEC [ 11 
was also used for the synchronous composition operation. 

v. COMPARISON WITH OTHER APPROACHES 
In Section I, we listed several other approaches to failure 

diagnosis, namely, analytical model-based methods, fault trees, 
expert systems, and model-based reasoning methods. We now 
highlight the differences between these methods and our 
approach, focussing on the two main aspects of the failure 
diagnosis problem: 1) model building and 2) the diagnosis 
process. The differences between our approach and the an- 
alytical model-based methods as well as the expert systems 
approaches are quite evident. In the subsequent paragraphs, 
we concentrate on the comparison of our approach with fault- 
tree-based methods and the model-based reasoning methods 
for failure diagnosis. 

On Model Building: 
* Our approach is completely event-based and our modeling 

formalism is that of finite state machines, a formal class 
of models for DES that is amenable to composition (e.g., 
the synchronous composition) and analysis. In contrast, 
the models used for constructing fault-trees are variable 

digraphs, where nodes can represent either variables or 
certain failure events. 
Our approach separates local behavior from global be- 
havior: local behavior is modeled in a completely modu- 
lar manner by the individual component FSM models, 
which are then automatically composed by means of 
the synchronous composition; the sensor map however 
is global and captures component interactions. Thus, 
overall our approach builds the complete model in a 
“systematic” manner. In our opinion, the variable-based 
digraph models cannot be manipulated as easily and often 
lead to difficulties in going from local to global behavior 
(e.g., the problems of “negative feedback loops” [ 161, 1221 
and “apparent nonlocal causality” 1221). 
Our appro’ach makes use of models of structure and 
behavior like the model-based reasoning methods. A wide 
variety of modeling formalisms have been proposed in 
the model-based reasoning literature, including FSM [23], 
[7], qualitative differential equations [9], [20], constraint 
equations 1111, signed-digraphs 1221, and so forth. In 
the work on model-based reasoning that we have seen, 
however, there is n o  systematic method to generate the 
complete system model that exploits modularity in the 
manner that we do. 

On the Diagnostic Process: 
* Our “diagnoser” is a formal dynamical model that is a 

“replica” of the system model G. Therefore, the state of 
the diagnoser can be easily updated recursively. Fault- 
trees are not really replicas of the underlying system 
models used to build them. This is also true for model- 
based reasoners. 

* The entire process of failure-hypothesis generation, test- 
ing, and discrimination carried out by the model-based 
reasoners is “built-in” in the diagnoser. The hypothesis 
generation step of the reasoning process, which is based 
on comparing predictions from the model with actual 
observations, may be thought of as corresponding to the 
attachment of failure labels to the state estimates. The 
hypothesis generation, testing, and discrimination process 
may be thought of as transitions of the diagnoser from 
a normal state to an F,-uncertain state and then to an 
F,-certain state. 

* Diagnosers are automatically synthesized from the system 
model. To the best of our knowledge, the automatic syn- 
thesis of fault-trees is not a completely resolved problem. 

* The proposed approach deals with multiple failure oc- 
currences just as well as single failure occurrences. This 
includes new failure occurrences during the diagnostic 
process. In the case of fault trees, it appears that multiple 
failures are more difficult to handle than single failures. 

VI. CONCLUSION 

We have considered the problem of failure diagnosis for 
large complex systems from the point o f  view of discrete-event 
systems. The underlying theory for our approach is developed 
in detail in [27]. The focus of the present paper has been on 

based and they are typically represented in terms of the modeling of systems for the purpose of diagnostics and on 
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the application of the theory in [27] to examples from HVAC 
units. We note here that the component models of the HVAC 
systems that we have used are generic to a lot of engineering 
systems. Further, the nature of the models discussed indicates 
the potential applicability of our approach to a wide class of 
systems. 

There are two crucial issues regarding the applicability of 
our theory to HVAC units or other classes of systems: 1) 
building the system model and 2) dealing with the compu- 
tational complexity of the diagnostics process. With regard to 
model building, we have proposed in this paper a systematic 
methodology for obtaining the complete system model from 
the (simpler) models of the individual components and from 
the information provided by the sensors. We emphasize that 
our methodology translates sensor information into events and 
thus all the information is captured in a pure event-based 
model. Building the individual component models, of course, 
may not be a trivial task and calls for knowledge of the 
application domain and engineering judgement in selecting 
the right level of abstraction. With regard to computational 
complexity, it is clear that since we are dealing with a 
partially observed system, in the worst case, the computational 
complexity of constructing diagnosers can be exponential in 
the size of the state space of the complete system model. 
This is an unavoidable feature of partial observation problems; 
however, three remarks are in order. First, our approach 
is scalable (up to computational limitations) because it is 
formal and systematic: given a library of individual component 
models that include normal and faulty behavior, everything 
else is solved algorithmically. Second, our experience so far, 
while limited in scope, tends to indicate that the system often 
has enough structure so that the worst case computational 
bounds may be rarely attained. Finally, for the task of on- 
line diagnosis of diagnosable systems, it is not necessary to 
store the complete diagnoser machine. It is sufficient to just 
remember its current state. Upon occurrence of an observable 
event, the new state of the diagnoser could be built on-line 
from its current state and the relevant part of the system model, 
with polynomial complexity at each stage. 
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