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Abstract. An example from hydroscheduling motivates the study of
Markov chains with strong and weak interactions. A control scheme is
developed which takes advantage of the weak coupling and provides a
suboptimal solution which differs from the optimal by not more than
the order of the strength of the coupling.

1. Introduction. Operations scheduling in electric power systems

involves decisions made over time-scales from hours (short term hydro-~
scheduling, unit commitment) to years (long-term hydro Teserve manage-
ment, nuclear refueling maintenance scheduling). This problem can in
principle be solved by Stochastic Dynamic Programming. However, the
computational intractability of this approach has led practitionmers to
partition the operations scheduling problem along heuristic lines,
resulting in a set of subproblems treated as though each were inde-
pendent of the others. Since operations scheduling comprises short
term, widterm and long term problems, time scale decomposition can be
used in order to develop rigorous procedures for separating the overall
problem into subproblems, and for recomposing subproblem solutions into
an overall solution.

Operations scheduling under uncertainty is a constrained sto-
chastic optimization problem. One way of solving constrained sto-
chastic optimization problems is through stochastic approximations [1].
Stochastic approximations lead to controlled Markov chain problems for
which algorithms have been developed [2]. The presence of short term
(fast) and long term (slow) problems in operations scheduling moti-

vates the study of Markov chains with strong and weak interactions.






In this paper we develop a decomposition algorithm for suboptimal
control of Markov chains with strong and weak interactions. The paper
1s organized as follows: In Section 2 an example from hydroscheduling
is presented where the existence of time scales is revealed. A con~-
strained stochastic control problem is formulated and stochastic ap~
proximations are used to yield a control problem for Markov chains with
strong and weak interactions. In Section 3 an algorithm for suboptimal
control of Markov chains with strong and weak interactions is presented.
A summary is presented in Section 4.

2. An Example from Hydro Scheduling. As a starting point we con-

centrate on the optimization of hydro resources.

2.1 The Model. The dynamic equations for the reservoirs can be
written in the form

(l)’ dx” = (w” = u” - 8”4+ B"u” + C”s”)dt

where t is in units of weeks and

X~ = state vector with components xi(r), i=1,...,N which are
the amount of water stored in reservoir 1 at time t.

u” = decision vector with components ui(T), i=1,...,N which
are the rates of water release from reservoir i for
electric generation at time rt.

s” = decision vector with componehts si(r), i=1,...,N which
are the rates of water spillage at time <.

B” = NxN water transfer matrix, where the component b7, de-
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notes the fraction of the rate of release u’ which

becomes available to reservoir i (typically, bij =0
or 1).
C” = NxN water transfer matrix, where the component clj de-

notes the fraction of the rate of spillage v? which
become available to reservoir i (typically, cij = () or
.
w” = inflow vector with components wi(r), i=1,...,N, denoting
the rate of inflow into reservoir i at rt.
Note that this model neglects delays between reservoirs; these can be
accommodated by appropriate modifications to (1).
The release rates for electric generation and spillage are con-

strained by
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The maximum spillage constraint is for flood control, fish-habitat
maintenance, adherence to water laws, etc.; this constraint is not nor-

mally active. The states are constrained by

4) 0 < %] S Xy i=1,2,...,N

A number of inflow models are possible. Here we assume that the

reservoir inflows take the form
(5) dwi fi(r, wi(r))dr + gi(r,wi(t)) dBT i=1,...,N

where fi and g, may be obtained by identification [5) and the Bi are
independent Brownian motions.

The load may be modeled as the diffusion process [5]
(6) dD = ¢B(et,t,D)dT + Vae dB_

where D has periods, dependent on &, in €et(years) and t (weeks) where
€ = 1/52 is a time scaling parameter. The load may also be modeled as
a Markov chain as described in [6].

Scaling of Variables to Reveal Time Scales
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we obtain the transformed reservoir dynamics and the inflows equations

(9) dx = H"(w-u-s + Bu + Cs)dr






(10) dwy = £ (v ,u () deVEI (e (D) dBi‘

Assume that the components of x in (1) or x in (9) are ordered so that
(11) Xy e 2 Fomay 2 e 2 X max’
the first NS reservoirs have sufficient capacity to be considered

seasonal or annual reservoirs, and the last NF = N - NS reservoirs are

weekly reservoirs, with k defined such that

(12) x(NS + 1l)max = ek XNSmax

where k 1s a constant and ke<<l. Equation (9) may be written

eKI 0
Ng
(13) dx = H(w-u-s + Bu + Cs)dr.
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I and I are identity matrices of appropriate order, and
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where the diagonal elements of H are of the same order. Equation (13)
shows that the first Ns reservoirs change levels much slower than the
levels of the last N_ reservoirs.

F
Cost Function

For the hydro scheduling problem formulation treated here, the
value of water is the cost of the displaced thermal generation; the
associated optimization problem is to minimize production cost. Let
ei(xi, ui) be the amount of electricity generated by release rate uy
when the amount of water in reservoir i is Xy Then given that the

demand is D, the thermal part of demand the power system must generate

N

(16) T=D-) e (x, uy)
i=1

and the production cost is
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where c(+) 1is usually a convex function of the required thermal genera-

tion T.
2.2 The Optimization Problem. The optimization problem can be

stated as follows:

Minimize J(u,s) \
* *
{ul, siliﬂl,...N} te{0,T]

subject to (6), (12), (17) and

(18) 0 < xi < 1 >(P)
(19) 0<u 21

s
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(21) J(u,s) = 1lim T E -/. c(D -:?: ei(x su_))drh.
T<o o = i’ 74

Sufficient Conditions for Optimality
The sufficlent conditions for optimality for problem (p) are

given by the Hamilton-Jacobi equation (HJE)
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where J¢ is the optimal cost.

An approximate solution to the optimization problem may be ob-
tained by discretizing the HJE by the method of stochastic approxi-
mations to obtain an optimization problem for Markov chains [1]. Dis-

cretization results in the following optimization problem.

(23) Minimize J (u,s) = 171-‘1? EZT:t(D —}N:ei(xi,ui))m\
(ui,si!iﬂl,...,N} =0 1=1
subject to
(24) s e U@ v P(R)
(25) s(1) € s(4), ¥
(26) p(t+at) = p(1) [A(u,s) + eB(u,s] )

where U(1), s(1i) are prespecified sets, the i~dimensional row vector
p(t) has elements pn(r) which represent the probability that state n
is occupiled at time t, the matrix A(u,s) is block diagonal,

(27) Au,s) = diag[All(u,s) AZZ(H’S)'f'Akk(u’S)]’

and the elements aij(u,s) and bij(u,s), i,j=1,...,2, satisfy

(28) bij(u,s) > 0 if ai (u,8) =0

3
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(29) }E: bij(u,s) =0
j=1

This chain is referred to as a Markov chain with strong and weak inter-
actions or as a weakly coupled Markov chain. The strength of the coup~
ling is dependent on the small parameter =.

3. Control of Markov Chains with Strong and Weak Interactions.

In order to develop a decomposition algorithm that provides a near

optimal solution to problem (R) we need to introduce first the aggre-
gate Markov chain associated with that of (26).






The Aggregate Markov Chain

The aggregate Markov chain corresponding to the weakly coupled
Markov chain described by (34) 1is defined by

(30) M(e+l) = n(t)Q(u,s)

where

(31) Q(u,s) = I + eM(u,s)

and the elements mij(u) of M(u) satisfy *
(32) Miyu,8) = v, (u,s) Byyluss) 1
(33) 1=(1,...,1]"

and vi(u,s) is the steady state probability distribution of the chain
(34) vi(t+1) = vi(t) Aii(u,s) .

The number of states in the aggregate chain is equal to the number of

groups of weakly coupled states in the original chain.

The following assumptions are made in order to study the control
problem (R):

(A1) For all (u(i),s(i))eU(1)xS(i) i=1,2,...% the weakly coupled
Markov chain has a single ergodic class [2].

(A2) For each group Ii of the weakly coupled states and for all
(u(3),s(3))eU(3)xS(J) the matrices Aii(u,s) are regular [3].

(A3) For all (u(i), s(1i))eU(1)xS(i) the aggregate chain has a single

ergodic class.

(A4) The instantaneous cost c¢(D - Zei(xi,ui)) is uniformly bounded for
xiefl,z,...l} and (u(3),s(3))eU(3)xs(j).

(A5) For each i,je{1,2,...2} the functions

Prob{xt+l = j[xt = i} = a; (u,8) + € b, (u,s)
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as well as the instantaneous cost are continuous with respect to

(u(d),s(4)).

*B(u.s) is partitioned in a way compatible with A(u,s).






(A6) The sets U(1),S(i) of admissible controls for each state i are
compact.
Under the above assumptions the following results have been obtained
[4]:
Theorem 1 [4]
Under (Al) - (A3), for any policy (u(1),s(1))eU(1)xS(1) i=1,2,...2,
the components pi(u,s) of the steady-state probability distribution of
the weakly coupled Markov chain, p(u,s), satisfy

(35) p,(u,s) = (Hj(u,S) + 0(8))(vi(u,s) + 0(e)) el ,3=1,2,...K

b
where Hj(u,s) is the steady~state probability distribution of the

aggregate chain. B
Theorem 2 [4]

Under assumptions (Al) - (A6) the cost Je(u) corresponding to
any fixed policy (u(i),s(1)eU(1)xS (1), 1=1,2,...2 can be approximated
by

(36) Je(u,s) = Jo(u,s) + 0(e)
where
(37) Jo(u,s) =§_: Hj (u,s)zv;(u,S) ?(D,xi,ui)
and j=1 ian
(38) E(D,xi,ui> = ¢c(D —i‘ e;(x,u)). @
i=1

Theorem 3 [4]
Let assumptions iAl) - (A6) be satisfied, (uo,so) be the policy
minimizing J°(u,s), i.e.
(39) Jo(uo,so) = min Jo(u,s),
(u,s)eUxS
(UxS=U(1)x...U(l)xS(l)x...xS(l)),
and (u*(e),s*(e)) be the policy minimizing Je(u), i.e.

(40) I (a(e),s (e)) =  min 3_(u,s)
€ (u,s)eUxS
Then,
(41) lin (J_(u,s%) - Je(u*(s),s*(s))) =0 o

e-+0






The above results suggest the following two step algorithm that com-
putes a near optimal solution to problem (R):
First Step

Let £=0 solve for vj(u,s) from (34) (J=1,2,...%) and compute the

costs

i —
42)  Z =Y Vi), (1) T0,x ,u1)).

iEIj
Second Step

Compute Q(u,s) using vj(u,s) from Step 1 and (32), (33). Then
compute Hj(u,s) and Jo(u,s) from (30) and (37) using the costs 5% from
Step 1.

In terms of the hydroscheduling problem this algorithm suggests
the following: Instead of solving the overall hydro scheduling problem
at once, solve first the short term problem; imbed the solution of the
short term problem into the midterm problem and solve the midterm
problem; imbed the solution of the midterm problem into the long term
problem and solve the long term problem. Each of the above’problems
is of smaller dimension than the original overall problem and the per-
formance achieved is nearly optimal. Under certain conditions we can
proceed further and reduce the computational requirements for the con-
trol of the aggregate chain by decomposing the policy spaée as indi-
cated below.

Assume that

(A7) UxS can be partitioned into sets R R RM such that

1
43 1) UxS = LJ R
(43) (@) uxs =U Ry
(44) (1D RO Ry =4 ¥(1,3) 143

(144) V(u,s)eRi the matrix of transition probabilities Q(u,s)
for the aggregate Markov chain is the same, 1.e.
(45) Quy,s,) = Qu,,s ) ¥((uy,8), (u.,8 ))eRy
Then we have the following result:
Theorem 4 [4]
Assume (Al) - (A7). Consider (um,sm), (ur’sr)ERs such that
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Then (“r’sr) does not need to be considered in the control of the
aggregate Markov chain. m

Theorem 4 shows that among all the policies that result in the
same long run behavior of the system (i.e. the same Q(u,s)), only
those which result in the minimum short run cost (i.e. minimum costs
for the fast Markov chain control problem) should be considered for
the long run optimization problem (i.e. the control problem for the
aggregate chain).

~ A simple example presented in [4] illustrates the decomposition
algorithm as well as the decomposition in policy space.

4. Summary. An example from hydro scheduling motivated the study
of Markov chains with strong and weak interactions. A control algo-
rithm which takes advantage of the weak coupling and provides a sub-
optimal solution differing from the optimal by not more than the order
of the strength of the weak interaction was developed. Finally a de-
composition of the policy space which reducgs the computaﬁional re-

quirements for the control of the aggregate Markov chain was presented.
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