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Abstract-We model flow control between one receiving node 
and its adjacent transmitting nodes in a computer network as a 
Markov decision problem. Given that the control action is to 
dynamically allocate a fixed number of time slots among M 2 2 
transmitters, the objective is to characterize policies that mini- 
mize the total number of messages awaiting service at the 
transmitting nodes subject to the evolution of the state. We 
partially characterize a set of optimal allocation policies, and 
show that finding a finite number of dynamic optimal alloca- 
tions suffices to completely describe an optimal allocation pol- 
icy. Moreover, by taking advantage of these structural proper- 
ties of an optimal allocation policy, we show that the number of 
computations required to find an optimal policy may be signifi- 
cantly reduced. For M = 2, we show that the optimal policy is a 
monotone function of the state and that the total cost is convex. 
When the process of message generation at one transmitter is 
stochastically larger than the process of message generation at 
the other, we further characterize an optimal allocation. These 
last two properties of an optimal policy imply an additional 
reduction in the number of computations. Finally, when the 
processes of message generation at the M transmitters are 
independent and identically distributed, the explicit form of an 
optimal allocation policy is found. 

I. INTRODUCTION 

E address a flow control problem that arises in the W performance design of the hop-by-hop layer of com- 
puter communication networks. For a detailed overview on 
the architectural layers and flow control mechanisms, the 
reader is referred to [ 13 - [3]. The hop-by-hop scheme studied 
in this paper is the same as the one in [4], [5], its purpose 
being to maintain a smooth flow of traffic between M nodes, 
termed as transmitters, attempting to send messages through 
a single communication channel to an adjacent node, termed 
as the receiver. The time axis is divided into equal segments 
called slots. All messages consist of packets of equal length 
and the transmission time of a packet is one slot. A packet 
transmission may only begin on a slot boundary. Each trans- 
mitter has an independent arrival process of packets and a 
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buffer of infinite size. Only one transmitter is allowed to 
transmit during a particular slot. 

T consecutive slots form a phase. Prior to the beginning 
of each phase, the receiver informs each transmitter of the 
number of messages (referred to as a window size) it is 
prepared to accept and the particular slots during which the 
transmitter is allowed to transmit. In making a decision on 
the current window sizes, the receiver uses the knowledge of 
the arrival statistics, the history of previous window sizes, 
and the information on the number of messages queued at 
each transmitter at the beginning of the previous phase. This 
latter information is sent by each transmitter to the receiver 
in a message of smaller size than a packet at some time 
between the end of the current phase and the beginning of the 
next one. Due to propagation delays and the arrival of new 
packets, the number of queued messages at each transmitter 
will have changed by the time this information reaches the 
receiver. 

The problem is then to find a policy for the receiver to 
allocate the slots among the transmitters at each phase of the 
decision process to minimize a total discounted cost com- 
posed of the number of messages awaiting service at each 
transmission node. We note that this is a discrete-time 
stochastic control problem with partial information. It can 
also be viewed as one of optimal resource allocation. Special 
cases of this problem were addressed by Rosberg and Gopal 
[6] and Cansever and Milito [4], [ 5 ] .  Rosberg and Gopal [6] 
considered a single transmitter with a cost function composed 
of the number of queued packets and the number of unuti- 
lized transmission slots that could be allocated to other links. 
Cansever and Milito [4], [5] studied a problem with two 
transmitters and simplified the cost structure in [6]. They also 
conjectured that their results hold for M > 2 transmitters. 

In this paper, we consider the general problem with M 2 2 
transmitters and messages of equal priority. We do not find 
an optimal allocation policy in analytical form as this task is 
very difficult. However, by deriving several structural prop- 
erties of an optimal policy, we show that finding a finite 
number (i.e., 7') of dynamic optimal allocations suffices to 
completely describe an optimal allocation policy. For M = 2, 
we discover additional properties of the optimal allocation 
policy not found in [4], 151. We prove that an optimal 
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allocation policy is monotone in the state and that the total 
cost is convex. Using this property, we show that to obtain 
an optimal policy it is enough to find optimal allocations for 
only T states; for all but one of these states there are only 
two allocations that are candidates for optimality. The con- 
vexity property of the total cost also enables us to further 
characterize an optimal allocation policy when the arrival 
processes at the two transmitters are stochastically ordered. 
The situation where the arrival processes at the M > 2 
transmitters are identical follows as a particular case, and 
unlike [4], [5], we find the optimal allocation policy in closed 
form. 

Systems involving transmitters whose outputs embody dif- 
ferent priorities (e.g., voice and data) are not considered 
here; analysis of optimal allocation policies for models with 
priorities are reserved for future publication [14]. A limited 
amount of work has been published on optimization of proto- 
cols for allocation with priority, but for schemes different 
from ours. For example, in one of their models, [15], [16] 
grant absolute priority to voice transmission up to some 
maximum number of slots, and handle the remaining slots on 
a random access basis. 

The paper is organized as follows. In Section 11, we 
formalize the model and formulate the problem as a dis- 
counted Markov decision process. In Section 111, we partially 
characterize an optimal allocation policy for the problem with 
M 2 2 transmitters by deriving several structural properties. 
In Section IV, we let M = 2 and show that an optimal 
allocation is monotone in the state and that the total cost is 
convex. The convexity property of the total cost enables us to 
further characterize an optimal allocation policy when the 
process of message generation at one transmitter is stochasti- 
cally larger than the process of message generation at the 
other. As a corollary, the explicit form of an optimal alloca- 
tion policy is found when the message generation processes at 
the two transmitters are independent and identically dis- 
tributed. In Section V, we study the special case wherein the 
message generation processes at the A4 2 2 transmitters are 
independent and identically distributed. The explicit form of 
an optimal allocation policy is found and the total cost is 
shown to be convex. Finally, we conclude the paper in 
Section VI. 

11. PROBLEM FORMULATION 

Consider a hop-by-hop scheme that operates as follows. 
There are M transmitting nodes attempting to send messages 
to a single receiver. All messages consist of packets of fixed 
length and time is divided into equal slots, one slot being 
long enough to transmit a packet. A packet transmission may 
begin only on a slot boundary. The window allocation pro- 
ceeds in phases, a phase being a fixed predetermined num- 
ber of slots, say T slots. Only one transmitter is allowed to 
transmit during a particular slot. We also assume that each 
transmitter has a buffer of infinite size. We shall place two 
further restrictions on the model: 1) packets arriving in a 
particular phase may not be transmitted in that phase, and 2) 
packets that are being transmitted during a phase are not 
penalized. These assumptions may be considered as a restric- 

tion on the model. Relaxing them results in an optimization 
problem whose action space consists of not only the window 
sizes allocated to each transmitter but of the order in which 
the slots are scheduled for transmission also. This is a 
considerably more difficult problem which will be the topic 
of future investigation. 

The processes of message generation at each transmitter 
are stochastic processes with known statistics. The number of 
packets generated at transmitter j during slot i, j = 
1,2;.. ,  M ,  i = 1,2;.- ,  are assumed to be independent 
random variables. For fixed j ,  l!J) ,  i = 1,2,  e ,  are identi- 
cally distributed with a general distribution function F ( J )  and 
finite first moment P. 

For every k = 0, 1,2; e ,  let Y J J )  be the number of 
packets generated at each transmitter j during phase k .  
Clearly for fixed j ,  1 5 j 5 M ,  YJJ) ,  k = 0,1,  * , are 
independent and identically distributed random variables with 
general distribution, say FgJ), the T-convolution of F(J) .  In 
addition, the random variables { Y J J ) ,  1 5 j 5 M ,  k = 
0, 1, - e ,  } are independent. We will denote by NiJ) the 
number of packets at transmitter j at the beginning of phase 
k ,  and by wp) the window size allocated to transmitter j 
during phase k .  Assume that wt), NO(J), j = 1,2; * e ,  M ,  
are given. 

Prior to the beginning of each phase, the transmitters are 
informed of the particular slots during which they are al- 
lowed to transmit. The receiver computes wp) before the 
beginning of phase k based on the following information: the 
knowledge of the arrival statistics, the history of previous 
window sizes, and the information on the number of mes- 
sages queued at each transmitter at the beginning of the 
previous phase. This latter information is sent by each trans- 
mitter to the receiver in a message of smaller size than a 
packet at some time between the end of the current phase and 
the beginning of the next one. This information is not sent in 
the header of the first message that each transmitter transmits 
to the receiver as in [4]-[6], in order to avoid the problem of 
a possible zero allocation window to some transmitter. 

Corresponding to this description, we define X ,  = (X i ' ) ,  
- , Xi")), where 

X P )  = max (0, N ~ J ' ,  - w p ~ ~ }  ii (NJC~ - wpll)+ 

(2.1) 

as the state of the system at the start of phase k .  The values 
of { X , ,  1 5 i I k }  will be used to compute w, = 
{ wf), - , wiM)) .  The most recent value of this set X ,  is 
calculated by the receiver well before the end of phase 
( k  - 1) for the following reasons: 1) each transmitter j 
sends Nl? I to the receiver just before the beginning of phase 
( k  - I), and 2) as T is sufficiently large, the receiver is 
guaranteed to receive the Ni?,'s before the start of phase k. 

Since packets arriving during phase (k - 1) are not al- 
lowed to be transmitted during this phase, then 

Nk = X ,  + Yk- ' ,  k L 1 (2.2) 
where Nk = (Nil) ,  * - , A$")) and Yk = ( YJ'), * e ,  Yi")). 
Let p!J) = P ( Y J J )  = i), i = 0, 1;- e ,  j = 1; e - ,  M. The 
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distribution of NF)  given X y )  = x is then 

p ( j p  = n I X p  = X I  

(2.3) 
P( ~ 2 ; ) '  = n - x )  = pYix if n 1 x 

= 10 otherwise. 

We assume that all packets arriving during a slot join the 
buffer at slot end. This is a reasonable assumption since an 
arriving packet at a transmitter is usually placed in a tempo- 
rary area upon arrival and joins the queue when the transmit- 
ter is ready to accept it (at the end of the current packet 
transmission). For 0 < v I 1, we then define the v-dis- 
counted cost incurred at phase i when there are &(j) packets 
at the beginning of the phase, and a window wjj) is allocated 
to transmitter j during the phase as 

M T-1 
C Y ( 4 ,  w;) 4 y ( i - ' ) T + k  

j = l  k=O 

Here, e. = (e!'); * , Nj')), wi = (w)'); * e ,  w ! ~ ) )  and 
{ ( j , jL :  1 I m I T - l }  denotes the number of packets ar- 
riving during slot m of phase i at transmitter j .  The above 
cost function shows that all packets (except the ones being 
transmitted during a phase) awaiting transmission at the 
beginning of every slot are penalized. By a straightforward 
calculation, we obtain 

where A = C l l i v k  and B = ( C E l x j ) ) ( C : i : k v k )  are 
constants for fixed v and T (recall x(J) = E[(!,':]). 

By (2.1) and (2.2) the system dynamical and observable 
equations are written respectively as 

The state space is S = Z y  (M-dimensional vectors with 
nonnegative integer valued components) and the action space 
is 

I M 
A = w = (w('), w(*); * e ,  w ( ~ ) )  EZ~: w( j )  I T . 

j =  1 

(2.7) 

i 
Without loss of optimality , we restrict attention to Markov 
policies (see [7, Chapter 31, [12, Sections 6.4-6.71) 

g k : S + A :  x k - w k = g , ( x k ) .  (2.8) 

Let XI = x = ( x ( I ) ,  - * * ,  x ' ~ ) ) ,  the initial system state, be 
given. For the N-step finite horizon problem, the objective is 
to minimize over the window vectors wi E A , 1 I i 5 N ,  the 

expected total v-discounted cost 
N 

KN(X)  i= 1 E [ C y ( X i  + y i - ] ,  wi) 1 X I  = x ] .  (2.9) 

Letting /3 = v T  and using (2.5), we obtain for /3 < 1 
N 

i =  1 
K N (  x )  = A 0i-I 

(2. lo) 

For fixed T ,  since A and B are constants, (2.10) shows that 
there is no loss of optimality in restricting attention to the 
expected total 0-discounted cost. 

According to (2.1 l), we only need to consider the cost of the 
untransmitted packets at the beginning of each phase. We 
then define the expected cost per phase when the system is 
in state x and a window w is allocated as 

M 
q x ,  w) 4 E [ ( Y ( J '  + x(J )  - W ( J ) ) + ]  (2.12) 

J =  1 

where each Y is an integer random variable with distribu- 
tion F$". For future reference, we let Y = ( Y ( ' ) ,  Y('), 

, Y ( M ) ) .  By (2.3) and (2.12) 
M m 

L ( x ,  w )  = ( x ( ' )  - w(') +j)p j"  
' = I  J = w ( l ) L  x ( 1 )  +1 

Let V / ( x )  be the minimal achievable total expected /3-dis- 
counted cost when the system is in state x and there are k 
phases to go. The optimality equations of dynamic program- 
ming for the N-phase finite horizon problem yield 

Vop(x) = 0, 

v/( x )  = minwsA { L( x ,  w) 

+ P E I V f - l ( [ Y + x -  w]+)]), 1 r k s N  
(2.14) 

where V f ( [ Y  + x - w]+) 4 V / ( [ Y ( ' )  + x(') - w(')]+, 
* - * , [ Y ( M )  + x ( ~ )  - dM)]+) .  From (2.9) and the defini- 

tion of V / ( X )  

V f (  X )  = 
k 

i =  1 
P'-'E,[ L(  Xi, w"], 1 I k I N 

(2.15) 

where E,[L(X; ,  w:)] 4 E [ L ( X i ,  w">l XI = X I  and 
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w,? E A ,  1 I i I k ,  are the optimal window vectors. Since p 
is fixed, we let 

v k  E vkp (2.16) 

to simplify the notation. 

111. QUALITATIVE PROPERTIES OF THE OPTIMAL POLICY 
FOR M 2 2 

In this section, we derive qualitative properties of V,( x) 
that will be used to partially characterize the structure of a set 
of optimal allocation policies. Our first main result (Lemma 
3.4) is that the minimal achievable total expected cost is the 
same for all initial system states whose components sums are 
equal. This is due to the linearity and the equality of the 
holding costs. As a consequence of this result, we shall 
derive the following properties of the optimal allocation 
policy (Theorems 3.8, 3.10): 

(1) With x being the initial system state, if 1: x(j) 2 T, 
then any allocation policy g satisfying 

g ( x )  = w, 
M 

w ( j ) =  Tand w(’)s.x(j)foreach j ,  
j =  1 

1 s . j I M  

is optimal. If CE1x(j) I T ,  then there exists an optimal 
allocation policy, say a, satisfying 

T (  x)  = w, 
M 

w(j) = T and w(j) 2 x(j)  for each j ,  
j =  1 

l s j I M .  

This property has the following interpretation: it is optimal to 
transmit the maximum number possible of queued messages 
that are known to the receiver because the holding costs at all 
the transmitters are equal. We note that in the case where 
a = x(J) < T ,  the optimal allocation of the ( T  - a )  
remaining slots depends on the statistics of the arrival pro- 
cesses. 

(2) The optimal allocation for any initial state is easily 
derived from the optimal allocation for the problem with 
initial state the M-dimensional vector with C E I x ( j )  in any 
ith entry and zeroes in all other entries. This result together 
with property (1) imply that it suffices to compute the 

T optimal allocations corresponding to the initial states 
((0,O; * ., 0), (1,O; * a ,  0); * 0 ,  ( T  - 1,O; * ,  0)} to com- 
pletely solve the finite horizon problem for each epoch. 

(3) Because of property (l), the problem of fully charac- 
terizing the optimal allocation of policy reduces to character- 
izing it when CE x(j) < T. In this case, because of prop- 
erty (2), the optimization problem is equivalent to one with 
zero as the initial state and an action space of smaller size. 

The above properties reduce the computational effort re- 
quired to determine an optimal allocation policy. To proceed 
with the analysis, we first establish some preliminary proper- 
ties of V,( x).  

Lemma 3.1: Vk(x) is a nondecreasing function in each 
x(j), 1 I j I M.  

Proof: The proof is by induction on k .  a 
Lemma 3.2: Vk( x) is achieved by an allocation wk( x )  E A 

~ 
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satisfying 
M 

j =  1 
w ~ ’ ( x )  = T .  (3.1) 

Proof: Define 

Gk(X,W) $ L ( X , w )  +PE[ ‘Vk- l ( [Y+x-  w]’)]. 

(3 4 
For any i, 1 5 i 5 M ,  we have from (2.13) 

~ ( x ,  w) - ~ ( x ,  w + ei) = P [  Y(’)  > di) - x(‘)] (3.3) 

which implies that L(x,  w + ei) I L ( x ,  w). Moreover, by 
Lemma 3.1 

E [  Y + x - w - e,]+)]  

I E [  V k - l ( [  Y + x - W ] + ) ]  (3.4) 

(3.5) 
so that 

Gk( x, W + e,) I Gk( x, w). 

Thus if Vk(x)  = G,(x, w,) and C M  lw!J) < T ,  then by 
(3.5) there exists U* E A  such that C,= ,U$,) = T and Vk( x) 

In the following corollary we show that if the probability 
of at least T arrivals within a phase is positive, then every 
optimal policy must allocate all the T slots, and conversely, 
if every optimal policy allocates all the T slots, then it must 
be that the probability of at least T arrivals within a phase is 
positive. 

Corollary 3.3: P I C E l  Y(’) 2 T ]  > 0 if and only if 
VXES, Vw,(x) E A  3 Vk(x) = G,(x, w,(x)), it must be 
that C,= wp’(x) = T. 

I&= 

= G,(x, U*). 

M 

Proof: 
( * ): P [ C z  Y(,) 2 T] > 0 implies the existence of an 

integer n 2 T such that P[CZ,Y(-’) = n] > 0. As { Y(,) ,  
j = 1,2, - * , M }  are independent, this, in turn, implies the 
existence of nonnegative integers n1; - * ,  nM such that 
C,= ]n,  = n and p g )  > 0 for each j ,  1 5 j I M.  Let 
Vk(x) = G,(x, w,) for some w* E A  and assume C z l w i J )  
< T.  As C:,(W!~) - x ( ~ ) )  < T and C,,,n, 2 T ,  there 
exists an i such that n,  > w?) - x@). Then p:,) > 0 and 
n,  > w?) - x(’) imply that P[Y( ’ )  > w?) - x(’)] > 0. Us- 
ing this result in (3.3) and combining with (3.4), we obtain 
G,(x, w* + e,) < G,(x, w,) and this contradicts the opti- 
mality of w*. 
(G): The proof is by contradiction. We assume that 

P[C:,YcJ) < T] = 1 and show that for some system state 
x = (x(’), - - a ,  x ‘ ~ ) ) ,  there is an optimal allocation w* E A 
with C,=lw!J) < T. If PIC/M_lY(J) < T ]  = 1, then 
P [ C E  Y(,)  = k ]  = 0 for all k 2 T.  Then as the random 
variables { Y (I)}:, are independent, there exist nonnegative 
integers n ,  , * * , nM such that CE n, < T, and P [  Y I 
n,] = 1 for each j ,  1 I j I M.  With n 2 (n , ;  e ,  n,), let 
a = IIT= ,a, be the stationary policy a,( x) = n for all x E S 
and all i 2 1. We will then show by induction that the total 
cost achieved by policy a as defined by (2.15), is equal to 

M 

M 

M 
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zero, i.e., E[ V,([ Y + x - we] ')] by the induction hypothesis. Adding 
(3.10) and (3.11), we obtain 

v k  2 0, V,(n,O) = 0. (3 4 
For k = 0, (3.6) is trivial. Suppose (3.6) holds for k. We ~ k + l ( X  - e, + e,) I V,+I(X>. (3.12) 

then have the following recursive equations: If x(') 2 1, then by the above inequality 

v k  2 0, 

V,+1(71.,0) = L ( 0 ,  .) + PE[ V,(., [ y - n]+)]. 
Since P[Y(j)  5 nj] = 1, then P[(Y(;) - nj)+= 01 = 1 for 
each j ,  1 I j 5 M.  Hence L(0, n )  = 0 and P[  Vk( n, [ Y - 
n]+) = I/,( n, O)] = 1. By using the induction hypothesis, 
we then have Vk+l(a,  0) = 0. Hence n minimizes the k-step 
cost. H 

By virtue of Lemma 3.2, there is no loss of optimality in 
restricting attention to those Markov policies whose action 
space is the set 

1. M 

j =  1 

x& = ( w(l), w(2), . . . , W ( ~ ) )  : w(i) = T 

(3.7) 

i 
The dynamic programming equations (2.14) then become 

~ , ( x )  = min_(l(x,  W )  + P E [  v,-,([ Y + x - W ]  + )] 
Wui 

= min(G,(x, w)} 
W u l  

In the next lemma we show that the minimal achievable 
total expected cost is invariant under packet transfers of the 
individual initial states of the transmitters. As a corollary, we 
show that this cost is the same for all initial system states 
whose components sums are equal. 

Lemma 3.4: For any i, j, if x( , )  2 1, then 

V,( x - e, + e,) = V,( x ) .  (3.9) 

Proof: The proof of (3.9) is by induction on k.  The 
assertion certainly holds for k = 0. Suppose V,(x - e, + 
e,) = Vk(x)  vx €5'. For some w* EA, write 

V k + l ( X )  = G , + d x ~  w*) 

= L (  x ,  w,) + PE[ V,( [ Y + x - w*] + )]  . 
If ws') 2 1, then 

V , + l ( x  - e, + e,) 5 G k + l ( ~  - e, + e,,w, - e, + e,) 

= G , + , ( x ,  W") = V,+I(X) .  

If ws') = 0, then as x(') 1 1, we have (Y(') + x(') - 1)+= 
Y(I) + x(') - 1 for all Y ( I ) .  Moreover, for all Y ( I ) ,  ( Y ( I )  + 
x(J) + 1 - ~$J))+I (Y(J) + x(,) - w$")++ 1. Thus by the 
monotonicity of L(*, W) and V,(*) 

L ( X  - e,  + e,, w,) I L ( x ,  w,), (3 * 10) 

E [  v,([ Y + x - e, + ej - w,] + ) I  

The term on the RHS of (3.11) is equal to 

V ~ + , ( X  + ei - ej) I V , + l ( x )  * 

Replacing x by x - e, + ej  in the above, we get 

V , + l ( x )  I V,+, (x  - e, + e;). (3.13) 

Combining (3.12) and (3.13) completes the proof of (3.9). H 
For X E S  define 

M 

a(.)  x(j), (3.14) 

y ( x )  T -  a ( x ) ,  for a(.) 5 T .  (3.15) 

To simplify the notation, whenever X E S  is fixed, we let 
CY 2 a ( x )  and y 3 y ( x ) .  

j =  1 

Corollary 3.5: 

V x ,  Y E S  a(x) = a ( y )  V k ( x )  = V,(Y) (3.16) 

Proof: Define 

U &  {U . = e i - e j , l I i , j s M } .  

There exist finitely many elements u l ,  u 2 ,  * * ,  U, E U such 
that the vectors defined by y o  y and Y I  Y I - ~  + V I ,  

1 I I I n, are well defined (they have nonnegative compo- 
nents) and x = y n .  Then by (3.9) 

1J 

V ~ ( Y )  = V~(.YO) = V k ( ~ 1 )  = * . .  = V,(Yn) = V ~ ( X ) .  

In the next lemma and theorem, we prove the properties of 
an optimal allocation policy stated at the beginning of the 
section. 

Lemma 3.6: If a I T, then 3 w,(x) E A  satisfying 
w p ) ( x )  1 x ( J )  for each j ,  1 I j 5 M such that 

Vk(X) = G , ( x ,  Wk(X)). 

Proof: Let V , ( x )  = G , ( x ,  w,) =-L(x, w,) + 
PE[ V,- Y + x - w,]+)] for some w* E A .  Assume ws') 
< x(') for some i. Then as Xz ,( w$') - xcr) )  L 0,  we have 
CI+,(w$') - x(l))  > 0. Hence there exists j ,  # i such that 
w$) > ~ ( ' 1 ) .  Define a policy n, that allocates a window 
U* = w* + e, - eJ at the first phase when the system state is 
x and then continues for the remaining ( k  - 1) phases 
according to an optimal policy. Then 

V,( "1 9 X )  = Gk( X ,  U*) 

= L (  x ,  U,) + PE[ V,- 1( [ Y + x - U*] + ) ]  . 
As x(') > w?), then for all Yc ' ) ,  (Y(') + x(') - ws') - 1)+ 

1)'s (Y(I1) + ~ ( ' 1 )  - w!'l))++ 1 for all Y('1). Thus by 
the monotonicity of V,(-), E[V,-,([Y + x - U*]+)] 5 
E[V,-,([Y + x - we]+- e, + e,J. By (3.1% E[V,-,([Y 
+ x - w*]+- e, + e,,)] = E[V,-,([Y + x - w*I+)l. 

= (YCl) + ~ ( 1 )  - w?))+- 1, Also (y(J1) + ~ ( J I )  - will) + 
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Hence 

E [ V k - , ( [ Y + x -  U " ] + ) ]  I E [ V k - , ( [ Y + x -  W " ] + ) ] .  

(3.17) 

Moreover by (2.13) 

L(  x ,  U,) - L(  x ,  W") 
- - E [  ( y ( j l )  + x ( j l )  - ,,,j;il) + I ) + ]  

- E[ ( y ( j l )  + x ( j l )  - ,,,p) + ] - 1 

- - p [  y(jd 2 w$) - x ( j d  1 - 1  (3.18) 

and clearly L(x ,  U,) 5 L ( x ,  w,). Thus Vk(nl ,  X )  = Vk(x) .  
If ~6') + 1 = di),  then the claim is proved. If ~ 6 "  + 1 < 
x ( , ) ,  then define a policy r2 that allocates a window vector 
w* + 2ei - ej, (where j ,  is such that w!jz) > x(j2)) at the 
first phase when the system state is x and then continues for 
the remaining ( k  - 1) phases according to an optimal policy. 
Then by the same argument as above Vk(r,, x )  = V k ( x ) .  
By proceeding in this fashion, we end up with a policy rI  
that allocates a window w?) + I = x(') to transmitter i at the 
first phase when the system state is x and then continues for 
the ( k  - 1) remaining phases according to an optimal policy 
and Vk(nl ,  x )  = Vk(x) .  Since i is arbitrary, the proof is 

We next show that if in addition to the hypothesis of 
Lemma 3.6, the probability of no arrival at each transmitter 
is positive, then the optimal allocation policy must allocate at 
least x( j )  slots to each transmitter j .  The intuitive reasoning 
behind this result is as follows. Suppose the receiver allocates 
di) < x ( ~ )  to transmitter i. Then it must allocate w(j )  > x(') 
to some other transmitter j .  As the probability of no arrivals 
at transmitter j is positive, then with some positive probabil- 
ity, transmitter j will not use all its allocated slots while 
there certainly are ( x ( ~ )  - wC0) > 0 packets awaiting service 
at transmitter i. Since i and j have equal holding costs and 
are arbitrary, it is then optimal to transmit all messages 
currently awaiting service. 

Corollary 3.7: Suppose p f )  > o for all j ,  1 I j 5 M .  
With the %me hypothesis of Lemma 3.6, i.e., a 5 T ,  
V w,(x)  E A  such that Vk(x)  = G k ( x ,  w, (x) ) ,  it must be 
that w p ) ( x )  2 x ( j )  for each j ,  1 5 j I M. 

complete. rn 

Proof: As in the proof of Lemma 3.6, let 

Vk( x) = Gk( X ,  w*) 

= L ( x ,  W") + PE[ Ll([ y +  x - w * ] + ) ]  

for some w* EA. Assume w6') < x ( ~ )  for some i. Then there 
exists j ,  # i such that ~ $ 1 )  > x(j1). Define a policy n1 that 
allocates a window U* = w* + e,  - ej at the first phase 
when the system state is x and then continues for the 
remaining ( k  - 1) phases according to an optimal policy. 
Then > ~ ( ' 1 )  and p p )  > 0 imply in (3.18) that 
L ( x ,  U,) < L ( x ,  w,). Combining with (3.17), we have 
Vk(n, ,  x )  < V,(x) .  But this is a contradiction to the opti- 

rn 
Next, we use the results of Lemma 3.4 and Lemma 3.6 to 

mality of the allocation w*. 

obtain the following theorem. 

Theorem 3.8: 
a) If a 2 T ,  then any allocation w,(x)  EA such that 

wi')(x) 5 x(') for each 1 is optimal, i.e., Vk(x)  = G,(x ,  

b) If cy 5 T ,  then for any i, 1 5 i 5 M ,  there exists 
w,(x) ) .  

wk(aei )  EX such that wg)(ae i )  2 a and 

I/ , (aei)  = Gk( sei, wk( q)), 
Vk( X )  = Gk( x ,  x + wk( .ei) - a e , )  . 

Proof: Let a 2 T ,  and pick i, 1 5 i I M. For any 
and any w = ( dl), - . , realization Y = ( Y (l) ,  - e ,  Y 

W M ' )  EA 

M 
= - T +  Y ' j ) .  (3.19) 

j= 1 

Hence 

M 
2 01 - T + E [  Yen]. (3.20) 

j =  1 

By (3.16), Vk-,([Y + x - w]+) = V k - l ( { X ~ l ( Y ( j )  + 
x( j )  - w ( j ) ) + } e i ) .  Using the monotonicity of V k - , ( . )  and 
(3.19) in the above, we obtain 

Combining (3.20) and (3.21), we get 
M 

G k ( x ,  W )  2 cy - T + E [  Y ' J ) ]  
j =  1 

M 
G , ( x ,  E) = a - T + 1 E [  Y ' j ) ]  

j= 1 

The lower bound on the RHS of (3.22) is then achieved by 
@, and thus G is optimal. This proves a). Next, we prove b). 
Suppose a 5 T and let 

= L( (Yei, w( (re,)) 
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for some w ( a e , ) E x  By Lemma 3.6, such an alloca- 
tion with di) 2 CY exists. Thus the allocation u(x)  = x + 
w( ae,) - cre, is well defined and U( x )  E A. Moreover. 

L ( a e i ,  w(ae i ) )  = L(cYe,,u(x) + aei - x )  

= L (  x ,  U( x ) )  

Hence Vk(aei)  = G,(x,  ~ ( x ) ) .  Also by (3.16), V k ( x )  = 
V,(ae,). Thus V k ( x )  = G,(x,  u(x))  = G,(x,  x + w(aei) 

The theorem asserts that for CY 2 T optimal allocations are 
easily specified. When CY < T ,  then for each CY E 
{ 0, 1,2,  - * , T - 1) it suffices to compute an optimal alloca- 
tion, say w ( x ) ,  for one x whose component sum is C Y ;  

optimal allocations for other x with the same component sum 
are easily determined from this w ( x ) .  Nevertheless, the 
relevant dynamic programming equations still require knowl- 
edge of the value function for all states. This requirement 
becomes less formidable when it is realized that the value 
function depends only on the component sum C Y .  

The next lemma helps to prove that an optimal allocation 
for any state x such that Cj"= x ( j )  = CY < T can be deter- 
mined from an optimization problem with an action space 
smaller than the original one. This is the third property of an 
optimal allocation policy stated at the beginning of the sec- 
tion. 

-sei). 

Lemma 3.9: 

Gk( X ,  x + w) = G,(O, w). (3.23) 

Proof: The identity follows directly from the definition 
(2.12) of L ( x ,  w) and the definition (3.2) of G,(x,  w). 

At this juncture, we remind the reader that for CY I T ,  
y 4 T - CY (cf. (3.15)) is the number of slots that we are 
interested in allocating optimally among the transmitters. We 
shall next parametrize our allocation problem in terms of y. 
We first define 

(3.25) 

We shall use these definitions frequently throughout the 
remainder of this paper. 

Theorem 3.10: Let CY S T .  Then for some U,, E B ( y )  
- 

Vk(X)  = G,(X,  X + uk,*)  = Vk(0, 7). (3.26) 

Proof: Let V k ( x )  = G,(x,  w,) for some w* E B ( T ) .  
for each j ,  By Theorem 3.8, such a w* with win z 

exists. Then 

V k ( x )  = G , ( x ,  w,) = min G , ( x ,  x + U ) .  
OEBB(Y) 

Using (3.23) in the above, (3.26) is now immediate. 
This theorem states that when CY 5 T, the search for 

optimal allocations over the action space A is equivalent to 
the search for optimal allocations over the action space B(y ) ,  
0 I y I T.  With 1 X denoting the size of set X ,  then 

1 B ( y )  1 is the number of nonnegative integer solutions of the 
equation 

M 

Y x ( j )  = 
j =  1 

and it is given by (see [9, p. 1501) 

IB(r>l  = y + y -  M -  1 l )  

Then 

and clearly 1 B ( y )  1 < I AI. For a given y, the number of 
allocations that could be optimal is thus reduced by a factor 

Remark I :  The results obtained in this section can be 
easily extended to hold for the infinite horizon expected 
discounted cost problem. By induction on k ,  the value 
function satisfies V k ( x )  5 V k + l ( x ) .  Moreover, since the 
average cost cannot increase with time faster than the average 
number of arrivals per unit time, and discounting reduces 
future costs at a geometric rate, it can be shown that for 
every allocation policy, the corresponding infinite horizon 
expected discounted cost is bounded. Then, by the standard 
arguments of [8] (Theorem 1) the minimal achievable infinite 
horizon expected discounted cost is the limit of the minimal 
achievable finite horizon expected discounted cost as the 
horizon increases indefinitely. Hence, by a limiting argu- 
ment, the results of Lemmas 3.1, 3.2, 3.4, 3.6, 3.9, Corol- 
laries 3.3, 3.5, 3.7, and Theorems 3.8, 3.10 are true for the 
infinite horizon expected discounted cost problem. 

of I A I / I B ( y )  1 .  

IV. MONOTONICITY OF THE OPTIMAL POLICY WHEN M = 2 

In this section, we let M = 2 and show that V k ( x )  is 
convex in x and that the optimal allocation policy is mono- 
tone in x. Submodularity of the total cost function in its 
arguments is shown to be a sufficient condition in the deriva- 
tion of these results. Moreover, when the arrival process at 
one transmitter is stochastically larger than the arrival pro- 
cess at the other, we use the convexity property of the value 
function to show that if the initial state ( x ( ' ) ,  x ( ~ ) )  is such as 
x( ' )  + x ( ~ )  < T ,  then for some U:'), a!*) satisfying U:') 1 U:*) 

and U:') + U*(*) = T - ( x ( I )  + x(*)),  ( x ( l )  + ui'), x(') + 
U!*)) is an optimal allocation policy. 

A .  Structure of the Optimal Policy When Y 
are General 

and Y 121 

In this section, we derive the monotonicity property of the 
optimal allocation policy and the convexity of the value 
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function when the arrival processes at the transmitters are for some a* E B ( ~ ) .  Define 
general. We first define convexity, submodularity and prove 
some preliminary lemmas. 

The following definitions are as in [13]. Let g be a 
function of x = (xI;**, x,), where x17* . * ,  ~ ~ € 2 .  We 

Our goal is to show that 

say g is convex in 2" if v u ~ B ( y ,  j ) ,  Gk+l(O,  a* + ej) 5 Gk+l(O, U + e j ) .  

G k + l ( 0 3  + ' j )  - Gk+l(o, and g is submodular in 2" if 

g(x + e; - ej) - g(x) 2 g(x - e,) - g(x - ei) 

v l  I i # j I n. 

( E [ ( Y " ) -  &) - I ) + ]  - E [ ( y ' j ' -  &))+]]  

(4.2) 

The following two lemmas are easy to prove; therefore, their 
proof is omitted. 

Lemma 4.1: Let g be a function of x = ( x1 , x2) E 2:. 
If g is monotonically nondecreasing in each variable, and 
convex, then g(x:, x:) is convex in Z 2 ,  i.e., for any i, j 

g(x+) - g([x - e ; ] + )  2 g( [x  - 5 1 ' )  

- g( [ x  - e; - e j ] + ) .  (4.3) 

Lemma 4.2: Let g, a function of x = (xl, x2) EZ:, 

a) g( xl, x2) is monotonically nondecreasing in each 

b) g( xl, x2) is convex in each variable, 
c) g( xl, x,) is submodular. 

satisfy the three properties: 

variable, 

Then g(x:, x:) is submodular in Z 2 ,  i.e., for i # j 

g([x + e; - e , ] + )  - g(x+) 2 g ( [ x -  e j l + )  

- g ( [ x -  e;]'). (4.4) 

In the next two theorems we show that V,(x) is convex and 
that the optimal allocation policy is monotone in x. 

Theorem 4.3: 
a) Let 0 5 y < T and v,(O, y) = G,(O, a,) for some U* 

€ B ( y ) .  Then for some i, 

V,(O, y + 1) = G,(o, U, + e;). (4.5) 

b) V,(x) is convex. 
Proof: Clearly, the theorem holds for k = 0. By as- 

suming that Vk(x) is convex, we shall show that a) and b) 
hold for Vk+j(x); thus by way of induction the theorem 
holds for all k 2 0. We first note that V,(x('), x(,)) satisfies 
the hypothesis of Lemma 4.2, namely, property a) follows 
from Lemma 3.1, property b) follows from the induction 
hypothesis, and property c) follows by a direct calculation 
from Lemma 3.4 (also note that this property holds with 
equality). Hence Vk((x(")+, (x(~))+) is submodular in Z', a 
property that we shall use shortly in this proof. 

Proof of a): Suppose Vk( x) is convex, and let x(l) + 
x(') = T - y > 0. Then by (3.26) 

We next show that 

Without loss of generality, assume j = 1. If a(') = then 
(4.9) is trivial; so suppose a(') > U*(').  Then a(') = a*(') + m ,  
a(2) = ai2) - m for some m L 1. For any realization 
( Y ( 1 ) 7  Y'')), let x1 = Y ( ' )  - U*(') - 1 and x2 = Y(,) - a!'). 
Then by repeated applications of Lemma 4.2 to Vk( x('), xC2)) 

V,( [ x1 + 11 + 9 x:) - &( x: 7 x2') 

- V,( [ yo) - (1) + [ y(2) - (2)  + . 
Vk+l(X) = r) a* ] 9 I ) 

= L(0,  a*) + PE[ V,([ Y - a*] + ) ]  Taking expectations on both sides of the above, we get (4.9). 
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Combining (4.8) and (4.9), we obtain 

V a E B ( y , j ) ,  

G k + l ( O t  a + ej) - Gk+i(Oj a) 

2 Gk+l(O,  U* + e,) - Gk+l(O, CL). (4.10) 

Since by the optimality of U* 

V u € B ( y ,  j ) ,  G k + l ( O ,  a) 2 G k + l ( O l  a*) (4.11) 

then (4.10) and (4.11) lead to (4.7). Let U = (U('), u ( ~ ) )  eB(y 
+ 1). Then there exists j such that u ( j )  1 a!j) + 1. Thus 
U - ejEB(y, j )  and by (4.7) 

G k f l ( O ,  ay + ej) I Gk+l(O,  U). 

We thus conclude that 

= min Gk+l(O,  U* + e j ) .  
j = 1 , 2  

- 
This completes the proof of a). Let Vk+l(O, y + 1) = 
Gk+l(O, U* + e,). Then by the optimality of ay + e,,,, it 
must be that 

or equivalently, VI 

E [  ( y ( m )  - a!m' - ')+ ] - E [  ( Y(,) - a ! m ) ) + ]  

+PE[ V,( [  y - a* - e,] + ) ]  

- [ (  < E y(l) - ai') - 1 ) + ]  - E [  ( Y( ' )  - U!'))+] 

+PE[  v,([ Y - a* - e,] + )] . (4.12) 

Proof of b): We shall show that V k + l ( x )  is convex. 
We take advantage of the structure of the optimal policy to 
prove this result. Since the optimal policy takes different 
forms depending on whether CY 2 T or not, we break the 
proof in three cases, CY 1 T ,  CY I T - 2, and the boundary 
case a = T -  1. 

Case I :  a 1 T.  Let V k + I ( x )  = G,+,(x, w,) for some 
w* E B ( T ) .  By Theorem 3.8,  there exists an optimal w* such 
that w!? 5 x(') for each I .  Then 

2 
V k + l ( x )  = C Y  - T +  CE[Y"'l 

I =  1 

Applying Theorem 3.8 again, i.e., w* is also optimal when 
the system state is x + e, or x + e, or x + e, + ej, we 
obtain 

2 

I =  1 
vk+,(x+ e j )  = CY + 1 - T +  CE[Y"'I 

+ PE[ Vk( Y + x + e, - w:)] 9 

2 

V k + l ( x + e , + e , ) = ~ + 2 -  T +  C E [ Y ( ' ) ]  
I =  1 

+ PE[  v,( Y + x + e, + e, - wy)]. 
Thus by the induction hypothesis, i.e., the convexity of 
V,(x) ,  V k + l ( x )  is convex. 

Case 2: a I T - 2. By (3.26) 

+ e, + e,) = G(o, - 2) = G ~ + ~ ( o ,  ay) 

for some ay E B(y - 2). Also by Theorem 3.10 and part a), 
respectively, we have for some rn and n 

V , + ~ ( X  + e,) = G(o, - 1) = ~ k + l ( O ,  + emI7 

V k + l ( x )  = G ( 0 ,  r) = G k + * ( O ,  U* + e m  + e,). 

Moreover by (3.9), V k + l ( x  + e,) = Vk+l(X + e,) and by 
the optimality of U* + e,, rn satisfies (4.12). Then 

G + l ( X  + e, + e,) - &+dx + e,) 

I ) + ]  = E [  ( y ( m )  - a.'"') + ] - E[ (y(W - 

+ @ { E [  Vk([ y - .*I + 11 
- E [ V , ( [ Y -  U* - e m l + ) l ) .  

- 

If m = n,  then 

V,(x+ e,) - V,(.) 

- - E [  ( y ( m )  - airn) - I ) + ]  -E[  ( y(,)  - 0:") - 2 ) + ]  

+ P { E [  I/,([ Y - U* - e,]+)] 

- E [  I/,([ Y - U* - 2e , ]+ ) ] )  

and in this case, by the convexity of ( a ) '  and the convexity 
of V,(x+)  (as it is implied by the convexity of V k ( x )  and 
Lemma 4. l), it follows that V,+ x )  is convex. 

If rn + n ,  then 

V k + l ( X  + e, + e,> - K f + l ( X  + e,) 

- V k + l ( X  + e,) + h + l ( X )  

= { ( E [ (  Y(,)  - a!,) - I ) + ]  - E [ (  Y(") - U!"))+] 

+ P E [ V , ( [ Y -  U* - e , ] + ) ] )  

+PE[ Vk([ y - a* - em1 + ) I ) }  
- ( E [  ( Y (,) - a!") - 1) + ] - E [ ( Y (,) - aim))  + ] 

+ P W [  54 y - 4 +)I 
- E [  y - U* - em1 + 11) 
- ( E [  U [  y - U* - en1 + 11 

+ P E [  v,( Y + x + e, - wy)] , - E [ v , ( [ Y -  ay - e, - e , ] + ) ] ) } .  
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By (4.12), the first expression in { } on the RHS of the 
above identity is nonnegative. By the convexity of V,(X+), 
the second expression in { } on the RHS of the above 
identity is nonnegative. Thus V,+ ,( x)  is convex. 

Case 3: CY = T - 1. Applying Theorem 3.8, we obtain 

Vk+l(X + e,) = Gk+l(X + e,, x + 4 
2 

I =  1 

= E [  Y ( / ) ]  + PE[ V,( Y ) ]  9 

G + l ( X  + e,) = b + d X  + 4 7  

V , + ~ ( X  + e, + e,) = G,+,(x + e, + e,, x + e,), 
2 

I =  1 
= 1 + 2 E [  Y c r ) ]  

+ PE[ V , (  y + e , ) ] .  

Moreover by (3.26), we have for some n 

V,+,(x) = G t o ,  1) 

= E[(Y '" '  - I ) + ]  + 

V,+,tx + e, + e,) - I / k + l ( X  + e,) 

- V,+,tx + e,) + Vk+dX> 

= ( E [ ( Y ' " '  - 1 ) + ]  - E [  Y (" ) ]  + 1) 

+ P { ( E [ I / , ( [ Y -  en l+) l  - E [ J W ) l )  

- ( E [ I / , ( Y ) ]  - E [ V k ( Y +  e r ) ] ) ) .  

E [  Y ( / ) ]  
I#n 

+ PE[ Vk([ y - en1 + )I 
so that 

As we have shown earlier, the first expression in { } on the 
RHS of the above identity is nonnegative. Noting that 
E[ Vk( Y + e,)] = E[ Vk( Y + en)],  and using the convexity 
of Vk(x+), the second expression in { } on the RHS of the 
above identity is nonnegative. Therefore V,+ ,( x)  is convex. 
This completes the proof of b) and the theorem. 

Theorem 4.4: Let Vk(x) = G,(x, w*). Then 

Vk(X + e,) 
min,,,,,G,(x + e,, w, + e, - e,) 

if w? < T (4.13) = I  G,(x + e,, w,) if w!? = T .  

Proof: Let x(') + x ( ~ )  = CY, and y = T - CY. If CY L 

T ,  then by Theorem 3.8, V,(x + e,) is achieved by w* and 
the desired result is immediate. Suppose then that CY < T .  By 
(3.26) 

vk(x+ e,) = K ( 0 , y  - 1) = G,(X + e,, x + e, + U*) 

for some U* E B ( y  - 1). Applying Theorem 4.3, we have for 
some j 

v,( x) = V,(O, y) = G,( x ,  x + + e,). 

Letting w, = x + U, + e,, we deduce (4.13). 

It can be shown by limiting arguments (cf. Remark 1) that 
the results of Theorems 4.3 and 4.4 are also true for the 
infinite horizon expected discounted cost problem. 

Note that the proof of Theorem 4.3 was based on the 
submodularity of I/,( x: , x2+) in Z 2  as it is implied by the 
monotonicity, convexity, and submodularity properties of 
V,(x,, x,) in Z:, and Lemma 4.2. This technique however, 
does not work in the proof of Theorem 4.3 for A4 > 2 
because V,(x: ,. a ,  x h )  is not multimodular (see [lo] for 
the definition) in Z M .  More specifically, if part c) of Lemma 
4.2 is changed to multimodularity of g (  .) (a property that 
the value function satisfies) in Z y ,  then multimodularity of 
g ( (  -)+) in Z M  is in general not true when M > 2. 

We conclude this section by noting the practical usefulness 
of Theorem 4.4. By Theorem 3.8, for each epoch we only 
need to compute an optimal allocation for each state 
(x('), x ( ~ ) )  E ((0, 0), (1,O); a ,  ( T  - 1,O)) .  By Theorem 
4.4, after an optimal allocation is found for state (O,O), the 
optimal allocation for each sequent state is either the same or 
differs by one allocated slot. This certainly is a reduction in 
the computational effort required to determine an optimal 
allocation policy. 

B. Structure of the Optimal Policy When Y") is 
Stochastically Larger than Y f2 )  

In this section, we derive the structure of an optimal 
allocation policy (as described in the beginning of the sec- 
tion) when the process of message generation at Station 1 is 
stochastically larger than the process of message generation 
at Station 2. We prove the intuitive result due to the linearity 
and equality of the holding costs, that when x(') + x ( ~ )  = CY 

I T ,  it is optimal to: 1) allocate x(,) to each transmitter j ,  
and 2) allocate the remaining ( T  - CY) slots in such a way 
that transmitter 1 gets at least as many slots as transmitter 2. 

Theorem 4.5: Let 0 I y I T and suppose Y ( ' )  L Y('). 
Then for some U* = (U:'), ai2)) E B ( y )  satisfying U:') 1 ai2) 
we have 

st 

Vk( x) = Gk( x ,  x + U*). 

Proof: Write V,(x) = G,(O, 6,) = L(0, 6,) + 
PE[ V,- ,([ Y - S,]')] for some 6, E B ( y )  and suppose 6:') 
< Si2). We will show that the allocation 6, = 6, + e,  - e2 
is also optimal. We have 

G,(O, 6,) - Vk(X) = L(0,6,)  - q o ,  A*> 

+ P{E[  V,-,([ y - & , I +  )] - E [  V,-l([ y - 6* l+  ) I ) ,  

L(O,S,) - L(0 ,6*)  
= E [ (  y(2) - 6p' + ')+ - ( y @ )  - 6$2')+] 

(4.14) 

- E [  (y(U - p )  + - (yCU - 6 p  - 1) + ] . 
Define the function G(x) of the integer variable x as 
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- - 

Then 

'V , (z ,  - L O )  - V,(Zl>O) 

Vk(Z2 + L O )  - V,(z,,O) 

if z ,  2 1 and z2 5 - 1 

if z1 I 0 and z2 2 0 
, 0 otherwise. 

By the monotonicity of V k - , ( x ) ,  W ( x , )  L 0 and by the 
convexity of V,- 1( x ) ,  W( x , )  is monotonically nondecreas- 
ing. Moreover, 6;') I 6i2) - 1 implies that Y ( ' )  - 6$') 2 
Y(2)  - Si2) + 1. Thus W( Y ( ' )  - Si')) 2 W( Y ( 2 )  - Si2) + 1) 
and therefore 

E [  W (  Y ( 2 )  - Si2) + l)] I E [  W (  Y ( ' )  - Si'))] . (4.19) 

In addition, Y ( ' )  Y ( 2 )  implies that P [  Y ( ' )  I 6!"] I 
P[  Y ( 2 )  I Si2) - 11. Substituting this result and (4.19) in 
(4.18), we obtain (4.17). Combining (4.16) and (4.17) in 
(4.14), and using the optimality of 6,, we obtain G,(O, 6,) = 
Vk(x) .  If (A$') + 1) L (Si2) - l), the claim is proved; other- 
wise let 6, = 6, + e ,  - e2 .  Then by the same argument 
G,(O, 6,) = G,(O, 6,). Proceeding in this fashion, we get 
G,(O, 6,) = V,(x)  where 6, = 6, + ne, - ne2 and n is the 

4 
Remark 2: The convexity of the value function Vk( x )  for 

M = 2 (Theorem 4.3) is a crucial result in establishing 
Theorem 4.5. We note that if one shows that the value 

S I  

smallest integer such that (6:') + n )  2 (Si2' - n). 

function is convex for M >  2, then Theorem 4.5 easily 
generalizes by the same technique. 

By taking advantage of the convexity property of the value 
function, we have been able to further characterize an opti- 
mal allocation policy when the arrival processes at the two 
transmitters are stochastically ordered. The property of an 
optimal allocation policy, as described by the above theorem, 
could be used to decrease the number of computations in the 
search of optimal allocations even further. 

An immediate application of Theorem 4.5 is when the 
arrival processes are i.i.d. In this case, we show that an 
optimal allocation policy is expressed in closed form. 

Corollary 4.6: Let 0 I y I T and suppose Y ( ' )  and YC2)  
are i.i.d. Then for any a*. = (a!'), ai2)) E B ( ~ )  satisfying 

I ai1) - a!,) I I 1, we have 
V,( X )  = Gk( X ,  x + a,). (4.20) 

Proof: We first establish the existence of an allocation 
as stated above. Y ( l )  and Y( , )  are i.i.d. is equivalent to 

Y ( ' )  g Y( , )  and Y ( 2 )  g Y(' ) .  By Theorem 4.5, Y ( ' )  g Y ( 2 )  
implies the existence of an optimal allocation 6, E B(y) such 
that 62') L Si2). If 62') = Si2), then the corollary is immedi- 
ate; otherwise Si2) < 6:') and Y(2)  g Y(' )  imply, by the 
same argument in the proof of Theorem 4.5, that the alloca- 
tion a, = 6, - ne, + ne,, where n is the smallest integer 
such that (62,) + n) - (6:') - n)  E (0 ,  l},  is also optimal. 
The existence proof is thus established. Next, we show that 
any allocation as described by the corollary is optimal. Let 
a* = (ai", a!2)) be optimal and such that 1 ai') - ai2) 1 I 1. 
If a!') = ai2), there is nothing to prove, otherwise without 
loss of generality, suppose ai2) = a!') + 1. Note that the 
only other allocation satisfying the hypothesis of the corollary 
is 6, = (ai2), a!"). Then clearly, L(0, 6,) = L(0, a,) and 

E [  v,([ y - 64 + ) I  
Y ( ' )  - ai1) - 11 + , [ Y( , )  - a!')] + I] 

the second and third equalities following from the symmetry 
of V,(* , * ) and the fact that Y(') and Yc?) are i.i.d., 
respectively. Hence G,(x ,  x + a,) = G,(x ,  x + 6,). W 

For M = 2, we have been able to show that an optimal 
allocation policy is monotone in the state and the value 
function is convex for general arrival processes. For M > 2 ,  
these properties are difficult to prove when the arrival pro- 
cesses are general. Motivated by the result of Corollary 4.6, 
and the problem simplification when the arrival processes are 
i.i.d., we generalize Corollary 4.6 for M > 2 in the next 
section. 

V, THE OPTIMAL POLICY WHEN THE MESSAGE GENERATION 
PROCESSES AT THE MTRANSMITTERS ARE I.I.D. 

In this section, we derive the optimal policy when the 
processes of message generation at the M transmitters are 
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independent and identically distributed. We show that there 
exists an optimal allocation of the form: if x(l), d2), 

, dM),  the initial states at transmitters 1 ,  2, - - * , M ,  
respectively, are such that , x( j )  < T ,  then it is optimal 
to: 1) allocate to each transmitter j x ( j )  slots, and 2) allocate 
the remaining [ T  - I;"= , xcn]  slots to the transmitters as 
evenly as possible. Cansever and Milito [4], [5] studied this 
problem but they did not solve it in explicit form. 

Theorem 5.1: Assume that { Y:'), j = 1 ,2 ,  e ,  M}?=o 
are i.i.d., and CY 5 T.  Then 

a) any allocation scheme a* E B ( ~ )  such that I ai') - 
a!j) I I 1 for all i, j is optimal, i.e., 

V k ( x )  = c.',(O,y) = G,(O, a,) = G,(x,  x + CL), (5.1) 

2) V k ( x )  is convex. 
Proof: The theorem clearly holds for k = 0. By assum- 

ing that V J x )  is convex, we shall show that a) and b) hold 
for V,+ ,( x) ;  thus by way of induction the theorem holds for 
all k 1 0. 

Proof of a): Suppose Vk( x )  is convex. We prove a) for 
V k + , ( x ) .  We first show that there exists an optimal alloca- 
tion scheme U* E B ( y )  satisfying I ai') - aij)  I I 1 for all i 
and j .  We know that Vk+ ,( x )  is achieved by some allocation 
scheme; so write 

V k + l ( X )  = Gk+l(O, 64 
= L(0, 6,) + PE[ V k ( [  Y - 6,] + ) ]  

for some 6 , ~ B ( y )  and suppose that for some i and j ,  
62) - S ! j )  > 1.  We will show that the policy 6, = 6, - e, + 
ej is also optimal. To simplify the notation, rename the 
variables i and j by 1 and 2,  respectively. We have 

G k + l ( 0 7  '1) - V k + l ( x >  

= L(O,S]) - L(0,6*) 

+P{E [  y - 611 + 11 - E [  Vk([  y - 6 4  + 11 1 9  

( 5  4 
L(0 ,6 , )  - L(0,  6,) 

- - ( E [  (Y(1)  - si2) - l ) + ]  - E [  (Y(1) - 6!2')+]) 

- ( E [ ( Y ' "  - a i l ) ) + ]  - E [ ( Y ' "  - si1' + 1 ) + ] ] .  

As Si2) + 1 < A!'), then by the convexity of ( e ) + ,  the RHS of 
the above equality is nonpositive. Hence 

L(O,S]) I L(0, 6,). (5.3) 

' V,( 22 - 1,0,  z+) - V,( 22,0,  z+) 

V,(Z] + l ,O,Z+) - V,(z , ,O,  Z+) 

if z1 I - 1 and z2 1 1 

if z1 2 0 and z2 I 0 
, 0 otherwise. 

We next show that 
a*(') = ain for all i and j ,  then a* is unique and a) is 

E[  V k ( [  - ) I  E[  ',([ - **I + ) I .  (5 .4)  proved. Suppose then a,") # aii) for some i and j .  Let 

We have 2 1 be &-number of components of U, that are equal, say 
to a,  and q = M - p be the number of components of a, 
that are equal to a + 1.  Then y = pa + ( M  - p) (a  + 1 )  or 
equivalently y = Ma + M - p .  By Euclid's division, then 
a is unique. It then follows that any 6, E B ( ~ )  satisfying 
I 62) - 6$ j )  I I 1 for all i and j is a permutation of a,, i.e., 
6, = (ui'l), u!'~), . e ,  a!'~)) for some distinct indexes 

E [  V,([ y - 41 + ) - Vk([ y - 6*l+ > I  
= E { E [  v,([ Y - 6, + e, - e,] + ) 

- V , ( [ Y - S * ] + ) l Y ( ' ) , I #  1 , 1 # 2 ] } .  
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i,, i,;.., i,. Then Moreover by the optimality of U* + e,, we have 

M V I ,  G ~ + , ( o ,  U* + e,) 2 Gk+,(O, U* + e,) 
L(0,  6,) = E [  ( Y ( ' )  - aii /))+] 

I =  1 or equivalently, V l  
M 

I =  1 
= E [ (  Y ( l )  - U P ) + ]  = L(0,  a,) 

By the symmetry of Vk( x )  +PE[ Vk([ y - U* - e,] + ) I  
> E y(l)  - ai1) - 1 )+I - E[  (Y(1)  - a y ) + ]  
- I( 
+PE[  vk([ Y - U* - e,] + )] . 

Vk([ y - a * ] + )  
(5  -8) 

Note also that U* + e, + e2 E B ( y )  satisfies the hypothesis of 

v k + , ( x )  = z ( o , y )  = Gk+l(O,u, + e ,  + e 2 ) .  

- - Vk( [ y o )  - u $ l l ) ]  + , . . . , [ y ( M )  - &)I + ) 
= Vk( [ y(1d - +, . . . , [ y(1.44) - ay] + ) 

for some distinct indexes j , ,  j ,  , * * , j,. Since { Y ( j i ) ,  i = 
1 , 2 ; - - , M }  arei.i.d., then EtVk(tY - 6*1+>1 = E [ V d [ Y  
- a,]+)]. Hence Gk+,(O, 6,) = Gk+l(O, a*) = V k + l ( ~ ) .  
The proof of a) is now complete. 

Proof of b): We shall show that V k + l ( x )  is convex. 
We take advantage of the structure of the optimal policy to 
prove this result. Since the optimal policy takes different 
forms depending on whether a 2 T or not, we break the 

case a = T - 1. 
Case I :  a 2 T .  Let Vk+'(x)  = G k + l ( ~ ,  w,) for some 

wr E B ( T ) .  By Theorem 3.8,  there exists an optimal w* such 
that w!') I x(') for each 1. Then 

part a). Thus 

We then obtain 

'k+l (x  + e, + e,) - Vk+l(x + e,) 

= E [  (y(1) - 

+ P P [  
- E [ V J [  Y - a* - e , ] + ) ] ) ,  

- E [  ( y ( l )  - a!') - 1 )+I 
proof in three cases, a 2 T ,  a I T - 2, and the boundary y - a*] + > I  

Vk(X + e,) - Vk( X )  

- E [  (y(1) - ai2))+] - E [  ( Y ( l )  - a!*) - I ) + ]  - 
V , + , ( X )  = a -  T + M E [ Y ]  + P E [ V k ( Y + x -  w*)]. 

Applying Theorem 3.8 again, i.e., w, is also optional when 

obtain 

V,+,(x + e,) = a + 1 - T + ME[ Y ( ' ) ]  

+ P { E [ V k ( [ Y -  fJ* - e l l+)]  

- E [ V k ( [ Y - a * - e ,  - e , ] + ) ] ) ,  the system state is x + e, or x + e, or x + e, + eJ,  we 

so that 

Vk+I(X + e, + e j )  - Vk+l(X + e,) 
+ P E [  vk( Y + x + e, - w " ) ] ,  

- + PE[  vk( Y + x + ei + ej - w,)]. 

Thus by the induction hypothesis, i.e., the convexity of 
Vk(x) ,  we see that V k + , ( x )  is convex. 

Case 2: a I T - 2. By (3.26) +DUE[ V k ( P  - a*] + > I  
- E [  Vk([ y - a* - e11 + 11) 
- ( E [  V k ( [  y - a* - e21 + ) I  

I/k+l(x + e, + e j )  = G ( 0 ,  y - 2) = G k + l ( O ,  a*) 

for all m and n .  Without loss of generality, assume ai1) 5 
for some U, E B ( ~  - 2) satisfying, by a), 1 airn) - ain) I 5 1 

aL2) 5 - * 5 aiM).  Note that such an ordering is justified 
by a). Clearly, U, + e, E B ( ~  - 1) satisfies the hypothesis of 
a). Thus 

- ~ [ ~ , ( [ ~ - u , - e , - e , ] + ) ] ) ) .  

By (5 .8) ,  the first expression in { } on the RHS of the above 
identity is nonnegative. By the convexity of V k ( x + ) ,  the 
second expression in { } on the RHS of the above identity is 
nonnegative. Thus Vk+'(x)  is convex. 

Vk+l(X + e,) = Vk+l(X + e j )  

= I/k+l(O,y - 1) = Gk+l(O, CL + e,) .  
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Case 3: CY = T - 1. Applying Theorem 3.8 ,  we obtain 

Vk+l(X + e,> = Vk+l(X + e,> = Gk+l(X + e,, x + e,> 

= ME[ Y “ ) ]  + PE[ Vk( Y ) ]  , 

V k + l ( x  + e, + e,) = G k + l ( X  + e, + e,, x + e,) 

= 1 + ME[ Y “ ) ]  + P E [  vk( Y + e , ) ] .  

Moreover by (3.26 

Vk+l(X) = I/k+l(o, 1) = Gk+,(O3 e,> 

the last equality being justified by a). Then 

Vk+l(X + e, + e,) - Vk+l(X + e,> 

- Vk+l(X + e,) + Vk+l(X> 

+ P W  V k ( [  y + ell + ) I  - E [  h ( Y ) I )  

- ( E [ ~ k ( Y ) ]  - E [ I / , ( [ Y -  e , l + ) l ) b  

= { l - E [ Y ‘ ” ]  + E [ ( Y ‘ ” -  l ) + ] ]  

Clearly, the first expression in { } on the RHS of the above 
identity is nonnegative. By the convexity of V k ( x + ) ,  the 
second expression in { } on the RHS of the above identity is 
nonnegative. Therefore V,+ ,( x )  is convex. This completes 

rn the proof of b) and the theorem. 

CONCLUSION 

In this paper, we have generalized the model of [4], [5] to 
M L 2. By deriving several qualitative properties of an 
optimal allocation policy, we have shown that finding dy- 
namic optimal allocations for only T states suffices to com- 
pletely describe an optimal allocation policy. Furthermore, 
when M = 2, for all but one of the T states there are only 
two allocations that are candidates for optimality. It is desir- 
able to extend this property to M > 2. However, it appears 
that the technique used for M = 2 does not generalize to 
M > 2 .  New methods to prove such properties are a subject 
of further investigation. The case when the holding costs at 
the transmitters are distinct will appear in a future publica- 
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