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Optimal policies for routing between two servers under imperfect information is treated by discrete
time dynamic programming. It is proved that certain inequalities involving stochastic ordering of
information measures can be propagated inductively from one epoch to the next. Convexity conditions
on the instantaneous cosls insure proper initiation and inductive continuation of these properties.
Consequently, an inductive procedure shows that threshold routing policies are optimal, and that the
total cost is convex and monotone.

Two examples are provided. The first deals with a tandem queue having inputs to both work
stations, and only inferential information available on the state of the second station. 1t is first shown
that the optimal control is bang-bang, and then that the hypotheses dictating a threshold policy
resulting in convex and monotone costs are satisfied. The second example considers optimal rouling for
customers arriving in a renewal stream, when the routing decision is between two parallel exponential
servers, and the observations are both delayed and subject to random errors. It is again shown that the
optimal policy is of the threshold type, and that the costs are monotone and convex.

KEY WORDS: Dynamic programming, stochastic ordering, stochastic dominance, optimal policy,
partial information, queues, routing, optimal routing, bang-bang control, bang-bang
policy, threshold policy, submodularity, convexity.

1. INTRODUCTION

Communication networks are often characterized by work stations that act
individually, each possessing only a local knowledge of its immediate environment.
Even when information can be exchanged among stations, there are propagation
and processing delays that render such information partially obsolete; also, faults
and transmission errors may render the data inaccurate. The optimization problem
can then be generally expressed as: based on this partial knowledge of the system
state, how should the individual work stations operate so as to maximize some
measure of the overall utility for the entire system?

While we cannot expect to obtain universal results of that nature, it is possible
to isolate certain network aspects for analysis and, in particular, to formulate
relevant problems in terms of optimal decentralized control, or as problems of
optimization based on incomplete knowledge of the state.

The work presented here is based on queueing models of communication

81



82 F.J. BEUTLER AND D. TENEKETZIS

networks, and more specifically, the nature of optimal routing and flow control for
such systems. These include considerations of whether and when a customer
should be admitted for processing, to which work station an entering customer
should be sent, how shall he be routed through the network, when is it
advantageous to transfer a customer from one work station to the next, etc.

Papers in this area have, of course, appeared earlier; we specifically cite [1,5-
9.15,16,18,21,22], all of which have treated the dynamic optimization of admis-
sion and customer transfer in simple queueing networks. In each case, the analysis
is dependent on the state of the (Markov) network being completely known. The
nature of these publications suggests that generalizations to partial information or
multiple decentralized control will be extremely difficult. Nevertheless, we believe
that we have been able to develop methodologies for elucidating qualitative
properties of optimal policies.

Specifically, our approach treats queueing models that can be reduced to
discrete time Markov systems through uniformization or embedding. This suggests
dynamic programming as an appropriate tool for the analysis of optimal policies.
The programming equation appears in terms of information states (see [2] or
[10]), which reflects the assumption of partial knowledge.

In Section 2, we examine typical dynamic programming relations for routing
applications. It is traditional to represent customer arrivals, routings, and depar-
tures by measure preserving operators on information measures. However, our
work is phrased in the more general context of stochastic orderings (see [14]); this
approach proved to be advantageous for two reasons: first, it circumvents the
difficulties others (e.g., [6,21]) have encountered with departures or transfers near
the “boundary”, and second, such orderings constitute a unifying principle for
routing actions. Accordingly, inequalities on the value function are expressed in
terms of stochastic dominance. These inequalities imply threshold properties for
choice of routing between two servers, as well as monotonicity and convexity of
the value function.

It is shown that if each of two functions is subject to these inequalities, so 1s
their minimum. This suggests that the same properties are valid by induction at
each step of the dynamic programming equation. To complete the necessary
arguments, sufficient conditions are derived for the running (instantaneous) costs
to initiate the inductive process, and to maintain it from each step to the next.

Section 3 offers two examples that generalize the existing literature. The first
extends [13] by consideration of a tandem queue where customer entrance is
effected to both work stations, and conditions at the second station are incom-
pletely known. It is shown that convex instantaneous cost functions lead to an
optimal policy of the threshold type, with monotone convex expected costs.

The second problem treats the optimal choice for routing customers arriving in
accordance with a renewal process to a choice of one of two exponential servers.
The routing decision is based on a delayed observation of the system statc.
Moreover, this observation is subject to random (independent) error, and the
number of service completions between customer arrivals is unknown. Again, a
convex cost function results in a threshold policy, and a convex monotone
expected cost.
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2. METHODOLOGY

This section treats certain analytic constructs used to deduce properties of optimal
routing policies for Markov queueing systems under conditions of partial know-
ledge of the system state. Specifically, it is supposed that at epoch n, when the true
state is X,, the observation at that epoch is specified by z,, , = h(x,, w,), where w,_ is
regarded as a random measurement error. It is well established (see [2] or [10]
that, under mild subsidiary conditions, the optimization problem can then be
posed in terms of the dynamic programming equation, in which the argument of
the future expected cost is an information state. Accordingly, we shall deal with
information states that are probability measures on Z; (two dimensional vectors
composed of non-negative integer valued entries) for each set of observations over
the past. The class of probability measures on Z; is denoted by M, and neM will
be used to indicate a generic information state.

Specifically, we are concerned with Markov systems in which dynamic decisions
on routing are applied to customers at their time of arrival and/or service
completion, where the actions are chosen on the basis of incomplete knowledge.
Thus, discrete time dynamic programming in terms of information state arguments
become applicable.

While the resulting optimal policies are too complex to characterize explicitly, it
is nevertheless possible to demonstrate qualitative properties. We shall consider in
detail systems where the arriving customer is to be routed to either one of two
work stations. Thus, the admissible (routing) actions move the process from x to
X +e¢;, where e; is the unit vector along component i. Then the optimal policy is
said to possess the threshold property if, whenever the action i (which increases X;
by unity) is optimal for x +e¢;, the same action is also optimal for x. Alternatively,
if i is not optimal for x, it cannot be optimal for x +e;.

Recognition that the optimal policy is of threshold type reduces the search over
policies described by a threshold. We shall also demonstrate convexity and
monotonicity of the expected total cost, which can be treated by similar
techniques.

For routing problems, the dynamic programming equation often takes on the
general form

Vam)=Cy(m)+min [V, , (4, 7), V, 1 1(A,7)], (2.1)
where A4; is an operator on 7 generalizing the notion of an arrival by the relation
(Am)(x) =m(x —e;). (2.2)

on xeZj. Also, in (2.1), C, represents the accumulated running cost in continuous
time over the interval [1,,t,,,), in which t, is the instant of the nth decision point.

The form of (2.1) suggests that induction constitutes a suitable technique for
proving the threshold properties as well as other facts about the optimal policy
and the resulting minimal costs. For the finite horizon problem with N epochs,
one shows that Cy(-) possesses property P, and then demonstrates that whenever
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P is true for V,, (Am), it also holds for the minimum of such functions. To begin
the induction for desirable properties such as optimality of a threshold, and/or the
convexity and monotonicity of costs, one generally supposes that Cu(+) is itself
convex and monotone.

The inductive plan based on (2.3) below has been carried out by Davis [4] and
by Hajek [6], who found conditions sufficient for propagation of the threshold
property. These conditions intertwine convexity and monotonicity with a sub-
modularity condition that directly describes the threshold property. The result is
that if f: Z; —»R™ meets (for i, j=1,2) the three conditions

f(X) £ f(Aix) (2.3a)
SAX) = f(X) = f(A;A4;%) — [(4;%) (2.3b)
f(Ax)— f(AX) S f(A}%)— f(4;4%) (2.3¢)

so does a(x)2min[ f(A4,x), f(4,x)]. Functions (on whatever state space) satisfying
the conditions (2.3) will be said to belong to X; hence, the desired result is that
feX implies ae X.

Here (2.3c) is a submodularity relation that has a particular threshold optimality
meaning; f(A?x)— f(A;A4,x) is the cost advantage of routing to i instead of to j for
state A;x and this advantage is enhanced if the i queue is shortened to state x. A
generalized form of (2.3c), appropriately rephrased in terms of information states,
will appear in (2.7c). The Egs. (2.3a) and (2.3b) relate respectively to the
monotonicity and convexity of the expected cost rather than to the nature of the
optimal policy.

Hajek’s proof of (2.3a) to (2.3c) entails a division and subsequent subdivision of
different cases, until there are eleven cases altogether. This suggests that his
method is not readily amenable to generalization to information states, such as we
have in mind. Specifically, we are interested in optimization under conditions of
partial knowledge of the state, so that we shall have to work over measures on Z;
to apply the necessary inequalities to information states. The inequalities (2.3) will
then be generalized to expressions involving M rather than vectors on Z;.

Thus, instead of showing that a(x)2min[f(4,x), f(4;x)], belongs to X, we
should ask concerning the analogous property for

a(n) £ min [ f(A,7), f(427)]. (24)

Yet another generalization relates to departures and customer transfers, whose
treatment (compare [6] and [21]) is inherently more difficult than that of arrivals,
since the departure operator produces change only when customers are actually
present. In systems with exponential service, one may then assume that departures
oceur in a Poisson stream, but are real when customers are present, and virtual if
the queue is empty.

The generic departure operator will be denoted by D, and a departure from the
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-coordinate i is represented by D;. A departure from the first coordinate, for

example, is described by its effect on a measure n on Z; by
(Dy7)(x) = 1(x +€;)8(x; > 0) + [n((0, x3)) + n((1, x,))]0(x; = 0). (2.5)

The analytical description (2.5) of a departure corresponds in all respects to the
intuitive behavior of departures. For instance, the operator D is a composition of
commuting operators, and A; commutes with D; for is j. Moreover, any D has
range M, while A4; is one to one from M into itself. Indeed, D; is a left (but not a
right) inverse for A;. D, is a left inverse for A;, but D, and 4, fail to commute. The
latter reflects the fact that an arrival followed by a departure leaves the state
unchanged, but that the same is not true for a departure preceding the arrival.

Since it is necessary to consider various combinations of arrivals and departures,
the notation and arguments become quite cumbersome. Fortunately, we are able
to avoid these complexities by introducing concepts from stochastic ordering;
indeed, stochastic ordering acts as a unifying notion that enables us to treat
models in which both departures and arrivals play a crucial role. We define a
stochastic ordering (compare [14], Chapter 8) through

DeriNITION 2.1 p is larger than v (in symbols: v < p) if
4'((xy, x2)) £ 4"((xy, X)) (2.6)

for all elements of Z.5 . |

In (2.6),

qi(x) £ Y, n(y),

yZx

where x£(x,,x,), and y=x is taken componentwise for vectors in Z. Examples
of orderings of measures (Definition 2.1) include n < A;n, Dn <m, and n < A,D;.

To analyze threshold policies, it is also desirable to describe probability shifts
for routings to or departures from a particular work station. For notational
convenience, we choose station #1, and define stochastic dominance in terms of
that station.

DeriNimion 2.2 g is larger than v along coordinate 1 (in symbols: v <, p) if

a) v<pt
and

b) 4"((0, x3)) =¢*((0, x,))
for all xe Z; . |

Thus, the first and third examples of the preceding paragraph illustrate ordering
along coordinate i.
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We can now rewrite (2.3) in terms of stochastic dominance. These inequalities
now apply to f: M—>R™ and take the form

TfWEf(w (2.7a)
SAp) = WS f(Au) - f(n) (2.7b)

whenever v<p, and for v <
SAY) = f(Ap) < f(Ap) = [(Aip). (2.7¢)

Of course, (2.7) specializes to (2.3) if the measures are taken to consist of a single
atom, and u is obtained from v by a single mass shift. As with (2.3), we shall use X
to denote the class of functions satisfying (2.7). With suitable assumptions on C,(")
in (2.1), proof of the inductive propagation of the inequalities (2.7) from V, to V.,
is then tantamount to showing that feX implies ae X, where a(-) is defined by
(2.4).

Induction for the threshold property requires only submodularity (2.7¢c), as will
be shown. The proof indicates that, if f satisfies (2.7¢), the same will be true for a
without reference to the other inequalities (2.7a) and (2.7b). Moreover, at each
epoch (2.7c) implies the threshold property by the same argument as that
following (2.3¢c).

As an example of the role of the departure operator relative to dominance along
a coordinate, let us consider optimal policies for arrival routing in the presence of
independent, unmeasurable departures over the interval between arrivals. This
leads to terms that reflect the expectation E, of the departure process. These are
of the form

b(r) £min Ep[ f(4,Dn), f(4,D7)] (2.8a)
or
b(n) 2 Ep{min [f(A4,Dn), [(4,Dm)]}, (2.8b)

in the dynamic programming equation, depending on the particular problem
considered.

Since properties (2.7) are maintained under summation with non-negative
coefficients, we can focus attention on f(Dn) only, rather than on the more
complicated sums occurring in (2.8a). The same is true for (2.8b), since if f(D-)eX
for each D the class X is closed under expectation with respect to D. A reduction
can be accomplished by limiting consideration to f(D;n). In fact, for D=D,\D
one uses commutativity to introduce the new measure 7i=D,D} 'n. For this
measure, we have D, 7= Dn, so that the reduction is accomplished by writing the
relevant functions in terms of the new argument 7. Consequently, the threshold
property will hold for (2.8) it for each realization D, and each element of M,

S(A, D)~ f(A,Dm) < f(A 7)) — J(A;m). (2.9)
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This inequality falls within the purview of (2.7), since D,n< 7.

While inductive propagation of submodularity (2.7c) does not require the
presence of either monotonicity (2.7a) or convexity (2.7b), the reverse is not true.
Specifically, convexity need not extend to minima of convex functions, so
convexity may not propagate in the absence of monotonicity or submodularity.
We shall find that the convexity proof not only requires the other two properties,
but turns out to be quite involved.

We formalize the threshold results by

Tueorem 2.3 Let (2.7¢) hold for f: M—R™. Then the same inequality is true Jor
al( -) as defined by (2.4).

Proof As can be directly verified, min(a,b) is alternatively expressed as
a+(b—a)” orb—(b—a)*, where (h—a)” =min(b—a,0) and (b—a)* =max (b—a,0);
if these are applied respectively to a(4,v) and a(A,v), we get

alA;v)—a(A) =[S (A (A1) = [(A(A,9)] + LS (A1(A29) = f(A3(A,)] 7. (2.10)

Now observe that v <, u implies A,v <, A,u. If we majorize the right side of
(2.10) by this inequality, we have the result (2.7¢) for a(-) with j=1and i=2. |

The proof that (2.7a) implics monotonicity for a(-) is immediate (even for the
most general case), and will receive no further attention. Also (2.7¢) has been taken
care of in Theorem 2.3. Therefore, the remaining effort is directed at the inductive
propagation of the convexity property (2.7b).

Suppose again that v <y, with the additional proviso that v and u are chained.
We say that v and yu are chained (i.e., connected by a chain) if there exists a finite
sequence m,,...,my in M such that

VT <y T, Ty < g M (2.11)

For such chained measures, we have

THEOREM 2.4 Let the inequalities (2.7) hold for f: M—R™*. Then (2.7b) applies to
a(+) for all chained measures.

Remark A proof that the more restricted inequality
f(Aﬂf) ~ f(m) §f(Aj(A17f))"f(Ai7t)

implies the same for a(-), can be accomplished by a single argument serving all
circumstances. However, that proof cannot be extended to the more general
situation treated here, so that we must consider three exhaustive cases as indicated
below. Also note that the submodularity of f appears in the proof for Case I11.

Proof By the transitivity of the reals, we only need to show the asserted result

for v < ;u. We wish to prove

a(Av)—a(vySa( A1) —a(p) (2.12)
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foreach v <, pand v <, p
Now we prove (2.12) for v <, u. Three cases need to be considered separately.

For the first case, assume
a(v) = f(A,v). (2.13)
For j=1,2 we have
a(A,v) —a(v) S f(A(A)— f(A) £ f(ALA 1) — [(Azp) (2.14)

by the definition (2.4) of a(-), and by (2.7b). Now choose j such that a(A4,p)=
f(A{A,p), and observe that f(A,u)2a(p) to show that the right side of (2.14) is

dominated by a(A,p) —aly).
For Case I1, assume the simultaneous equalities

a(v)=f(A,v) and a(Ay )= [(A (A ). (2.15)
The string of inequalities
Ayv) —a(v) £ f(A(Av) — fA S [(A(A ) — f(A ) (2.16)
comp]etes the argument, since the last expression in (2.16) is majorized by
a( Ay p) —a(A; p).
If nelther Case 1 nor Case I applies, we have the remaining possibility of Case
111, which consists of the conditions
a(v)=f(A;v) and a(Ap)= f(A3p). (2.17)
Using the first equality yields
a(A,v)—a(v) £ (A, (Av) — f(Ay). (2.18)
But by (2.7¢),
S(A((A9)— [(AV) S f(A(A0) = f(A,v) (2.19)

because v <, A,v. Moreover the right side of (2.19) is majorized by the replace-
ment of A,v by A,u. The argument is completed by observing that

S(A(Az0)) = f(Ap) S alAyp) — alp)
by use of the second equality of (2.17) and the relation a(u) < f(A,p).

Having finished the proof for v <,u, we now turn to the other possibility,
namely v <, u. Here we find that

a(Av) —a(v)=[a(4,v) —a(4, )]+ [a(A,v) —a(v)]. (2.20)
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The first term is majorized by a(A,u)—a(A4,u) by an application of (2.7¢) to a(").
By what has been already proved, the second term of (2.20) can only be larger if v
is replaced by u. The result is then (2.12). [ ]

For reasons too complicated to pursue here, the proofs of Theorems 2.3 and 2.4
do not extend to minima of more than two functions. Moreover, we have been
unable to construct a suitable proof, even under alternate sets of assumptions.
Nevertheless, we continue to conjecture that if /' (now defined for measures over
Z.)) belongs to X, so does

a(m) £ min [f(A;m)] (2.21)

If the conjecture is valid, we find that for v <;u
S(Ap)—a(v) < f(A;n) —ay(p). (2.22)
in which a;(-) is

a(m) émip [f(4;m)]. (2.23)

The interpretation of the threshold sufficiency criterion (2.22) is as follows: if the
optimal routing is to j for information state u, the right side of (2.22) is non-
positive. Then the left side of (2.22) cannot be positive, implying an optimal
routing to the same station j for state v. Conversely, if j is not optimal for v, it
cannot be optimal for pu.

In the remainder of this Section, we investigate aspects of stochastic ordering
relevant to properties of control with imperfect information, or decentralized
control. Two general topics are considered. First, we introduce an approximation
technique that extends the applicability of Theorem 2.4 to ordered measures that
are not chained. Second, we treat in greater detail the contribution of the
instantaneous (running) cost in (2.1) to the total cost V,, with reference to
maintaining the convexity of V, and the threshold character of the total cost.

Let us again take X to be a random variable defined on Z;, and distributed
according to me M. We then use #, to denote the approximation

2"
fx)= Y k2Ik2 T S qr(x)<(k+1)2°
qr(x) kgo ( g (x)<(k+1)277) (2.24)

to n. In the above, I(-) is an indicator function, which is unity on the set inside
the parentheses. It is easy to verify that =, is a probability measure belonging to
M. Further, v<p implies v, <y, for r=1,2,..., and v <, u implies v, <, y,.

To extend the sequence of approximations to f, we need a continuity hypothe-
sis. For this purpose, we must have a topology on finite measures on Z;. A
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convenient (but by no means only) choice is obtained by defining open sets
containing 7€ M by

N(n,x) =" (x)—g00] <n ).

We then require

Hypothesis 2.5 f: M—-R™ is continuous in the topology just mentioned. [ ]

A specific condition assuring the continuity of the ¥, is that C,(-) be continuous
for all n. In particular, V,=C, is then continuous, and continuity of the
subsequent ¥, follows by induction from (2.1), the minimum of continuous
functions again being continuous. Continuity and other properties of the C, are
discussed later.

The continuity hypothesis enables us to assert.

THEOREM 2.6 Let feX (ie., satisfy the three inequalities (2.7)), and assume that f
is continuous according to Hypothesis 2.5. Then aeX.

Proof That a(-) satisfies (2.7a) and (2.7c) has already been demonstrated. We
also know a satisfies (2.7b) for v<u when these are chained. Therefore, the proof
will utilize the approximation (2.24) to apply Theorem 2.4 to this inequality.

For any neM and any r, the total number of non-zero ¢J(x) is bounded, and
each non-zero term can only assume one of a finite number of values (k+1)27".
Now suppose v<pu, which entails v, <y, for each r. Then v, and g, differ in their
probability mass distribution only in a finite number of multiples of 277, each of
which is moved in the direction of increasing coordinate values to go from v, to y,.
We observe that each such move of mass represents a step in a chain such as
(2.11); hence v, and p, are chained.

According to Theorem 2.4, (2.7b) is applicable to each

a(m)&min[f(A,n,), f(4,7,)];

moreover, a is a continuous on M, because the same is true for f. It is also trivial
to note that n,—n implies 4;x,— A;m. In short, writing (2.7b) in terms of q,, and
taking limits on r produces the desired inequality for a. [ ]

In the applications envisaged by us, f: M—R" is invariably an expectation.
Accordingly, for each such [ there is a K: Z; -+ R" such that

S =E"K)=) n(x)K(x). (2.25)

X

In this setting, stochastic ordering may be characterized in terms of expectations
depending on g™ (cf. Definition 2.1). In fact, a simple computation shows that
(2.25) is equivalent to

EXK) =3 ¢"(x)[K(x)~ K(x —¢,) = K(x—¢;) + K(x —¢; —¢,]] (2.26)

x
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where we adopt the convention that K(x)=0 whenever any component of x is

negative.
Equation (2.26) provides the connection between stochastic dominance and

functions possessing properties (2.3a) and (2.3b). Indeed, from Definition 2.1 and
(2.26) it follows that v <y if and only if

E'(K) < EXK) (2.27)
for all K: Z7 -»R"* such that the right side of (2.27) is finite, with
K(x) = K(x—e,)— K(X —e3) + K(X—e, —e,) 20 (2.28)

for all xeZ;. Similarly, v <, u if and only if (2.27) holds for K monotone
nondecreasing in the first coordinate, with equality for K depending only on the
second coordinate.

Let us apply the above arguments to the running costs C, which also equals the
initial total cost V,. It is seen from the form (2.25), together with (2.27) and (2.28),
that we can claim the validity of (2.7a) if K satisfies the monotonicity and
convexity conditions (2.3a) and (2.3b). Unfortunately, however, we cannot assert
(2.7b) or (2.7¢) for V,. Consequently, we are unable to start the inductive process
that assures convexity and submodularity at each epoch.

As a practical matter, however, the running cost function (here denoted
generically by K(-)) is most often of the form

K(x)=K,(x,)+ K,(x,). (2.29)

In that case, we have for the corresponding expected cost

e

E{K)=

i

i

Y gr)K)) (2.30)
ji=0

1

in which g¢7(j) denotes the marginal probability in coordinate i, and for values of
x; equal to or greater than j.

The form (2.29) is of particular interest since, if Co=V, is of this type, it is easy
to verify natural conditions under which all three of the inequalities (2.7) are met.
In fact, we have

ThroreM 2.7 Let K(-) be as in (2.29), and let the K, be non-negative, monotone,
and convex. Then the functions f defined by

J(m)=EYK) (2.31)

satisfy the inequalities (2.7).
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Proof In the notation of (2.29) to (2.31),

f(AW) =) =Y @R{[Ki(k+1)— K k)]~ [Ki(k)— Ki(k—1)]} + K(0). (2.32)

kz0

By the hypothesized convexity, the expression in braces is non-negative. Since v<y
implies g!(k) < q!(k), (2.7b) follows.
To verify (2.7c), one observes that for v <;u and j#i

SAp) = f S f(A;p)— () (2.33a)
and

S(AW) = fO)=f(Aip) = S (); (2.33b)

this is a consequence of (2.32) and g}(k)=g/(k). Subtracting (2.33b) from (2.33a)
immediately yields (2.7c). n

According to the theorem, therefore, running costs taking on the form (2.29),
and having non-negative, monotone and convex components permit the initiation
of the inductive process. Not only does ¥, then have the properties (2.7), but also,
the C, will be consistent with the continuation of the induction.

3. APPLICATIONS
3.1 Routing Control for Tandem Queues

3.1.1 Problem description—features of the problem Consider the network of
Figure 1 consisting of two stations in tandem. Arrivals at Station 1 are described
by a discrete-time Bernoulli process with parameter 4,, and service at Station 2 is
also ii.d., with probability u, that a customer at that station departs the system.
Station 2 of the network accepts outside customers whose arrivals are described by
a discrete-time Bernoulli process with parameter 4,. Finally, transfers from Station
1 to Station 2 are specified at each epoch by a controlled parameter ue [0, ],
where p is the probability that a job at Station 1 (if any) leaves that station and
moves to Station 2.

Ay

Controller L

i Station #1 f——<—#| Station #2 p—=
! 2

“]e [Oyﬁ] HZ

Figure 1 Controlled tandem queue.

At each epoch the controller observes arrivals to Station 1 as well as departures
from that station. Thus, the controller knows precisely the number x, of customers
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at Station 1, but has only inferential information regarding x,, the number of
customers at Station 2; the latter is expressed through a probability distribution
ny(n). The objective is then to choose the controlled transfer parameter u(n) to
minimize an infinite horizon average discounted cost whose instantaneous compo-
nents are ¢,(x(n)) +c,(x,(n)), and c,(-) i=1,2 are convex nondecreasing functions
of their arguments. We allow simultaneous arrivals, services and transfers.
Simultaneous arrivals, services and transfers are permitted as a response to a
peculiar phenomenon that arises when the usual uniformization technique is used
to obtain the discrete-time equivalent of a continuous time system with imperfect
observations. To illustrate this phenomenon consider the simple M/M/1 conti-
nuous tandem queues of Figure 2. This network is a Markov system whose state is

lx—ﬁ iy _X_’ I ——
1 2

Figure 2 Uncontrolled tandem queue.

the tuple (x,,x,) (the number of customers at queues 1 and 2 respectively). If only
x; can be observed and A is the infinitesimal operator for the system, the usual
uniformization [3] can be accomplished by representing the system as a Markov
chain with transition matrix

K=I+y '4
where
YAy py s

The diagonal elements of K are then zero for all states such that x, and x, are
strictly positive. Suppose now that the system is in such a state (x, >0, x,>0) and
x, remains unchanged at some epoch n. Then, without observing x, directly one is
able to conclude that x, has decreased by unity at this nth epoch. With less
certainty one is also able to draw inferences on x, whenever x, fails to jump, no
matter what the state of the process happens to be. In other words, the usual
uniformization method renders it impossible to observe only x,, since one gains
information on x, not similarly obtained in continuous time.

Allowing simultaneous arrivals, services and transfers complicates the resulting
computation somewhat, but without changing the fundamental nature of the
problem and without affecting our results significantly.

A similar network consisting of two stations in tandem was studied earlier [13],
except that the controller had perfect information of all the events occuring in the
network. Becausc the complete state was known the selection of the service rate
was based on the tuple (x,(n),x,(n)), consisting of the respective number of
customers at the two service stations. In the proposed problem, the controller at
Station 1 actually controls m,(n) as well as x,(n) by deciding whether (or not) to
transfer a customer from Station 1 to Station 2. Consequently, our optimization
problem can be viewed as follows: control x,(n) and n,(n) for all  to minimize a
discounted cost of the form
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J@=EY BLe(xy(n) +es(x,(n)] (3.1)
n=0

where g2(go,25,-. ).
We shall use (x,(n),n,(n)) as the information state for the optimization problem

and will prove that the optimal control policy for a cost of the form (3.1) is not
only bang-bang, but is even of the threshold type, that is

W (i ifx(n)>n(n)
# (n)_{O otherwise (3-2)

3.1.2 Solution We first consider a finite horizon N, and then allow N—oco. The
problem of minimizing (3.1) over a finite horizon under conditions of partial
information represented by the information state (x, m)2(x,,m,) is treated by a
dynamic programming argument. Thus, we deal with the optimized value function

N
V3 (x,n)=min Eg{ Z Bilei(x (1) +ea(xx(t)]|x s (n) = x, m5(n) = TC} (3.3)
where the minimum is taken over all admissible policies. These policies regulate
the service rate u(t), n<t <N over the action space [0, ji].

We write the dynamic programming equation (DPE) in two different forms. The
first reveals that a bang-bang policy is optimal. The second leads to a monotone
optimal policy under a plausible set of hypotheses discussed in Section 2.

Equation (3.3) and the assumptions imply a DPE of the form

V%Jrl(x’ T[)=O,

Va1 =13+ ETesteam]+ BT (o) min A () o
welo.
for x>0, where
I, o= A VY, (ot 1L,2)+ (1= A) VY, (x5, 7), (3.5)
Ay (1= ) s 4 Aapia i+ (1= Ag)pamr .+ (1= Ay)(1 = o), (3.6)
AN ) =2, [VEL (Ag(x, 7)) — Vi (A (x, 7))
H (1= 2V, (Ayx = L) = VI (A (x— L)), (3.7)
Ay ) =(x + 1,71), Aylx, 1) =(x,7,), (3.8)

and
T (y)=m(y—1)o(y>0),
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(3.9)
n_(y)=n(y+ 1)o(y>0)+ [(0) + n(1)]}o(y =0).

When x=0, AY, ;(0,m)=0 by a direct computation so that the value of i does not
matter. This is as expected, since x =0 corresponds precisely to an empty Station
I; no transfer of a job from Station 1 to Station 2 is possible.

Equation (3.4) indicates that the last term of its right hand side (RHS) is
minimized by p=0 if AY, (x,n)>0 and by u=j if AY, (x,n)<0. Therefore, there
exists an optimal bang-bang solution for the subject problem.

To prove the monotonicity (threshold) property of the optimal policy we find it
convenient to rewrite the second of Egs. (3.4) according to

VI(x,m) = (x) + EY(c,(x,(n) + ﬁ{rﬁ+ 106, 1) + @AY (x, 7)) } (3.10)
with the definition o~ =min(a,0). Applying the equality
(f—~o) =min(a, ff))—a (3.11)

to (A), (x,m)", letting o in (3.11) be comprised of the negative terms of
AYs 1(x,m), and observing the form of I'Y, (x,n) and AY, ,(x,n), we obtain V¥(x,n)
as the alternative expression

Va(xm) = e (x)+ EX(co(xp(m) + BL(T = )Y (x, m)

+amin {4 VY, (Al )+ (1= A0V, (Adx— L)t} (3.12)

i=1,2

for x>0. As we have already explained, (3.12) is simpler for x=0, since the
minimization argument terms do not appear (or what is equivalent, become zero)
reflecting the fact that no transfer is possible.

The expression to be minimized in (3.12) suggests that for the inductive process
to propagate the submodularity property discussed in Section 2, it is crucial that
the minimum of two submodular functions again be submodular. Theorems 2.3
and 2.4 insure that this is indeed the case and provide the basis for the proof of
the threshold property of the optimal policy.

Indeed, V¥, (x,7) defined by the first of Eqgs. (3.4) has the property (2.7c), (as
well as (2.7a) and (2.7b)), that is, V¥, (x,n)e X. Assuming that VY, (x,n)eX, it
remains to prove that VY(x,n), defined by (3.12), has the same properties as
V¥, (x,m) for all (x,7). For this it is sufficient to prove that each of the terms
involved in the sum defining VY(x,n) satisfies the properties (2.7a)«(2.7¢c). The
instantaneous cost ¢(x, n)=c(x)+ E™(¢,(x,(n)) has the abovementioned properties
because ¢;(x) and c¢,(x) are convex monotone nondecreasing functions of their
arguments. The term 'V, (x,n) is a finite sum of V¥, ,(-) terms, with positive
coefficients; consequently, I'*, | (x,n)e X.

Finally, the last term on the RHS of (3.12) contains minima of finite sums of
VY, .. these being of the form
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o x, ) =min {4, Vo (A, (x, 7)) +(1 = 2V (A (x— 1 7),

AV (A6 ) + (1= AV (Ay(x— 1 7))} (3.13)

For a(x,#) the conclusions of Theorems 2.3 and 2.4 remain unchanged, and their
proofs, while appearing more complex, are essentially the same and will not be
detailed here. Therefore, VY(x,n)e X for all (x,7n), the proof of the induction step is
complete, and the threshold property of the optimal policy is established for the

finite horizon problem.
The optimal policy for the finite horizon control problem in tandem queues with
imperfect information, formulated in this section, is described by

i if x(n) 2 1,(n(n))

3.14
0 otherwise ( )

p¥(n) :{

To solve the infinite horizon problem, we must limit our consideration to
convex instantaneous cost functions of polynomial order. Then, for f<1, the
infinite horizon cost ¥V ™(x, n) is finite, and, because of Theorem 1 of [12],

Ve(x,m)= lim VN(x,n). (3.15)

N+

When <1, V*(x,n)eX because of (3.15) and the fact that X is closed under
pointwise limits. By the same argument as in the case of the finite horizon problem
it is possible to show that the optimal policy for the infinite horizon problem is
described by a time invariant threshold for each (x, n).

The results of the above analysis can be summarized by the following theorem:

THEOREM 3.1  The optimal policy for the infinite horizon control problem in tandem
queues with imperfect information, formulated in this section, is described by (3.2).

3.2 Routing Control for Parallel Queues

3.2.1 Problem description—features of the problem Consider the network of

Figure 3, consisting of two stations in parallel. Arrivals at the network are
described by a process whose interarrival times 7, are iid. with E(r,)<oc. The

L

Renewal

Process

=
2

Figure 3 Input routing to two parallel queues.
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services are exponential with respective rates ;. A controller observes perfectly the
arrivals at the network and has to assign each arrival to one of the stations.
Initially the controller has inferential information regarding x{0), the number of
customers at Station i at n=0. This information is described by n(0), which is the
probability distribution of the number of customers in the network at n=0. At
each arrival epoch t,, the controller receives noisy information about the number
of customers at each station at r,_, i.e., the time of the last previous arrival. This
information is described by

zn+1 :h(xmwn) (316)

where x, is the tuple whose kth component denotes the number of customers at
the kth station at t=t,, and w, is the noise in the observations. It is assumed that
{w,} is independent of {x,}. Assuming that N arrivals are going to occur, the
objective is to determine the controller’s routing policy to minimize a cost of the
form

2
J(g)=FE* Z jci(x,-(t)) dt, (3.17)
i=1 0

where each c¢,(-) (i=1,2) is a non-negative convex monotone nondecreasing
function of its arguments, g£(g, ..., ), and 1,,t,,...,ty are the arrival epochs.

A network of two stations in parallel was studied earlier by [11,19], except that
the controller had perfect information of all the events occuring in the network. In
the present problem the controller has only inferential information regarding x(t,),
the number of customers at Station i at the nth arrival epoch (n=1,2,...,N). This
information is expressed through the information state n(t,,)én(n), which is the
probability distribution of the number of customers at the two stations, for the nth
arrival epoch. The controller controls n(n) by deciding where to route the arriving
customers. Thus, our optimization problem can be viewed as: control n(n) to
minimize the cost (3.17). We shall prove that the resulting optimal control policy is
of the threshold type.

3.2.2 Solution The problem of minimizing (3.17) under conditions of imperfect
information represented by the information state n is treated by a dynamic
programming argument. By concentrating on the arrival epochs t; we get the DPE

2 o
Vim= 3 % J edx—d)")P[D(0) =d]n(x,; =x|y") di (3.18a)

i=1 x,d 1x

in

2
Vo (m=3% 3 | Ci((x~d')+)P[D(t):d]n(x,grlzx}y”"‘)dz

=1 x,d | PR

+ min {Ep[V, (A,Dm)]},n=1,2,...,N—1 (3.18b)

i=1,2

STOCH. B
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where D is a tuple whose components D, and D, denote the number of departures
from the respective stations in (¢, 1), X=(x,,x,),

cl(x—d) ) =cl(x;—d) ™), (3.19)

ne |

YU =z, g, st () ultn), L ult, ), (3.20)

and u(t,),...,u(t,. ) denote the controller’s decisions at t,,¢,,...,t, ; respectively.
To prove the threshold property of the optimal policy it is sufficient to show
that the value function defined by (3.18a)-(3.18b) satisfies property (2.7¢c). We
prove that this is true by induction.
To verify that (2.7¢) is satisfied for n=N it is sufficient to limit ourselves to an
analysis of ‘

gdm) =Y c(x;—d) " )n(x;) (3.21)

for fixed d 0. This is because if g/(n) satisfies (2.7c), then so does V,,. Note that
¢;( ) non-negative, monotone nondecreasing and convex implies the same for

Ki(x)=c{(x;—d)"). (3.22)

Hence g(n) satisfies (2.7a)+2.7¢c) because of Theorem 2.7. To proceed with the
induction we assume that V,.(n) satisfies property (2.7¢) and use Eq. (3.18b) to
prove that V. (n) satisfies the same property. The first term on the right hand
side (RHS) of (3.18b) is of the same form as the RHS of (3.18a); hence it satisfies
(2.7¢). The second term on the RHS of (3.18b} is of the form (2.8a); Theorem 2.3
insures that this term satisfies (2.7c). Consequently, V,. (=) satisfies (2.7c) and the
induction is complete.
The results of the above analysis are summarized by the following Theorem:

THEOREM 3.2 The optimal policy for the network of parallel queues with imperfect
information, formulated in this section, has the following threshold property: if for a
certain A;m, the incoming customer is assigned to Station i, the customer will also be
assigned to this station when the information state is © rather than A;n. n

Submodularity of the value function Vi(n) is a sufficient condition for the
threshold property of the optimal policy to hold. Moreover, as pointed out in
Section 2, inductive propagation of submodularity (2.7¢) does not require the
presence of either monotonicity (2.7a) or convexity (2.7b). Nevertheless, it is
possible to prove that the value function V(=) satisfies properties (2.7a)+2.7b). The
proof of monotonicity is immediate and will receive no further attention.

To prove convexity we start at n=N and note that g,(n) satisfies property (2.7b).
Thus, V,,(n) is convex. To proceed with the induction we assume that V,,(m)
satisfies property (2.7b) and use Eq. (3.18b) to prove that V. () satisfics the same
property. The first term on the RHS of (3.18b) is of the same form as the RHS of
(3.18a). Hence it satisfies (2.7b). The second term on the RHS of (3.18b) is of the
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form (2.8a). Theorem 2.6 insures that this term satisfies (2.7b). Therefore, Vi,
satisfies (2.7b) and the induction is complete.

4. CONCLUSIONS

Optimal routing policies for queueing networks under conditions of imperfect
information are of the threshold type under conditions specified in Section 2. The
examples of Section 3 indicate that these conditions are realized in useful queueing
models beyond those considered heretofore in the literature. Moreover, knowledge
that the optimal policy is of threshold type can guide its computation, as it
reduces the search over functions described by a threshold; nevertheless, compu-
tation of the optimal policy remains a very difficult and challenging problem.

It is our conjecture that the notion of information state in dynamic program-
ming can be applied to a wider range of problems, including especially decentral-
ized routing control of certain queueing networks. The use of inequalities such as
those of Section 2 will then lead to an elucidation of monotonicity and convexity
properties for the optimal policy and the resultant expected cost.
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