Probability in the Engineering and Informational Sciences, 7, 1993, 273-289. Printed in the U.S.A.

STOCHASTIC SCHEDULING
IN PRIORITY QUEUES
WITH STRICT DEADLINES

DimiTRIOS G. PANDELIS AND DEMOSTHENIS TENEKETZIS

Department of Electrical Engineering and Computer Science
The University of Michigan
Ann Arbor, Michigan 48109

Tasks belonging to N priority classes arrive for processing in a single or multi-
server facility. If the processing does not begin by a certain time (determinis-
tic or random), the task is lost and a cost is incurred. We determine properties
of dynamic, nonidling, nonpreemptive strategies that minimize an infinite hori-
zon expected cost.

1. INTRODUCTION

In this paper we study the problem of optimally scheduling tasks (e.g., messages
to be transmitted, jobs to be processed, customers to be served) that have con-
straints on their waiting time. Each arriving task has a due date or deadline asso-
ciated with the beginning of its service. This deadline either is known to the
scheduler or has a known probability distribution. If the service of a task does
not begin before its deadline expires, the task leaves the system and is consid-
ered lost. Tasks may have different priorities, which are modeled by different
penalties incurred when a loss occurs (higher priorities correspond to higher pen-
alties). We consider both single-server and multiserver problems. We determine
properties of dynamic nonidling, nonpreemptive scheduling strategies that min-
imize an infinite horizon expected cost due to the tasks lost.

This research was supported in part by the National Science Foundation under grant NCR-9204419.

© 1993 Cambridge University Press 0269-9648/93 $5.00 + .00 273

274 D. G. Pande/is and D. Teneketzis

Work on deadlines was first motivated by job shop applications (for results
in this area, see Conway, Maxwell, and Miller [7]). Similar issues are encoun-
tered in maintenance and replacement problems (see, e.g., Derman, Lieberman,
and Ross [8]). Another class of problems, falling in the content of queueing the-
ory, is that of impatient customers who leave if their waiting time exceeds a cer-
tain limit (see Baccelli, Boyer, and Hebuterne (1], Charlot and Pujolle [5], and
Stanford [14]). Related problems include limitations on the sojourn time (see
Takacs [15]) and system failure if due dates are not met (see Baccelli and Trivedi
[2]). The computational complexity of a problem with due dates is studied in
Cho and Sahni [6]. Modern applications involving tasks with priorities and
deadlines are found in computer and communication networks. Consider, for
example, a single channel used for the transmission of different types of mes-
sages (voice, video, data files, etc.), with one of them, say voice, having prior-
ity over the others.

Until now most of the research on stochastic scheduling with deadlines has
concentrated on performance evaluation of ad hoc policies rather than on opti-
mization. The assumption is usually that of first-come first-serve (FCFS) or
shortest time to extinction (STE) policy. For results on optimization see Bhat-
tacharya and Ephremides [3] and Panwar, Towsley, and Wolff [1 1], where the
optimality of the STE and STEI (STE when idling is permitted) policies is estab-
lished for systems with one class of tasks, and Pinedo [12] and Huang and Weiss
[10], where simple optimal policies are derived for problems for which there are
no arrivals and the deadlines have a known distribution. Recently, Bhattacharya
and Ephremides [4] considered a single-server scheduling problem for tasks that
belong to two different classes. They considered deadlines with respect to the
end of the service and assumed that tasks missing their deadlines are not lost but
stay in the system and incur a penalty at a rate depending on the task’s class.
Our work differs from that of Bhattacharya and Ephremides [3] and Panwar
et al. [11] in that it deals with N classes of customers. It differs from that of
Pinedo [12] because it considers systems with arrivals. It is also different from
that of Bhattacharya and Ephremides [4] because it deals with multiclass multi-
server systems where the deadlines are with respect to the beginning of the ser-
vice and the cost function is different (i.e., tasks that miss their deadlines are
lost).

The contributions of this paper are the following. For single-server and
multiserver systems and deterministic deadlines we prove that within a priority
class it is optimal to process the task with the earliest deadline. In choosing
between the tasks with the earliest deadlines in two different classes, it is opti-
mal to process the task that incurs the higher penalty if the deadline of the other
task is greater than a threshold that depends on the state of the system. More-
over, for multiserver systems we prove that when the number of available serv-
ers is greater than the number of waiting tasks it is optimal to use the fastest
servers first. We also show that results similar to the preceding hold for systems
with stochastic deadlines.

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 275

This paper is organized as follows. In Section 2 we consider the situation
in which the scheduler is informed of the deadline of each task upon its arrival.
The case in which only the probability distribution of the deadlines is available
to the scheduler is studied in Section 3. Finally, in Section 4 we consider vari-
ations of the problems studied in the previous sections. We study the problem
of routing tasks with deadlines to two similar servers; we also study the effect
the inclusion of a switching cost, incurred when a server moves from one type
of task to another, has on the optimal policy derived in Section 2.

2. DETERMINISTIC DEADLINES
2.1. The Single-Server Problem

We consider a single-server queueing system where the tasks to be processed
arrive according to a Poisson process of rate \ and have exponentially distrib-
uted service times with parameter x. We assume that the arrival and service pro-
cesses are independent and A\ < #- Each arriving task belongs to one of N
different classes and has a deadline associated with the beginning of its service
that becomes known at the arrival instant. Let d; be the ith task’s deadline. We
assume that d;, i=1,2,..., form a sequence of independent random variables
that are also independent of the arrival and service processes. No distribution
on deadlines of future arrivals is assumed.

Consider a task of type i,i = 1,2,...,N, whose arrival time and deadline
are f and d, respectively. If the processing of this task does not begin by its
extinction time e = ¢ + d, it is lost and incurs a cost Ci, where C, > C, >
"+- > Cn. We assume that Cyy > (A\/\ + #)Cy. Let IT be the class of nonidling
and nonpreemptive policies. Our objective is to find a policy »* € IT such that
for any other policy = € IT we have

liminf(JF - J7") > 0, o))
-+ 00
where J is the expected cost incurred under policy = until time ¢; ie.,

N
I =2 GE(XT,),

i=]

X, being the number of type 7 tasks lost under r until time ¢.

Note that the expected cost under any policy in IT may go to infinity when
[— oo. Then, according to our optimality criterion, r* is optimal in the sense
that it incurs a cost that, when it goes to infinity, is at a slower rate than the
cost incurred by any other policy. Because we consider nonidling and nonpre-
emptive policies, a decision has to be made when a service is completed and
there is more than one task waiting in the queue. Let lo, 1o = 0, be such a deci-
sion point and Mi(t,), i = L2,...,N, be the set of eligible tasks of type / at
time 1y, i.e., the set of tasks of type i whose extinction times are greater than

276 D. G. Pandelis and D. Teneketzis

to. The control action is to decide which task belonging to M (f,) =UN., M'(t,)
to process.

For Mi(t,) + @ let E'(t) = (ef,...,el}, n; = 1, be the set of extinction
times of eligible tasks of type i/ at time ¢, arranged in increasing order. From
now on e/ will denote both the time instant e/ and the task that has extinction
time e;. We introduce the following notation: The basic sample space is
denoted by Q. For a policy = and S C {1, V§, denotes the expected cost
incurred under = along S until time ¢ = #,. An optimal policy for the preceding
single-server problem possesses the properties given in the following theorem.

THEOREM 1: Consider a decision instant t,. Then

(i) Within a class of tasks it is optimal to process the one with the short-
est extinction time.

(i) For each i< j with M'(ty) + &, M/(ty) + O there exists a time instant
(threshold) t; < e{ such that it is optimal to process task e{ instead of
ef if e{ =z t;, and vice versa otherwise.

Proor:

(i) Consider a class i of tasks with at least two eligible tasks at time #,.
For every policy = € II that processes task ef, k = 1, at time ¢,, # € II
processes e{ and is identical to = when = processes tasks other than e;.
When = processes (if ever) task e{, ¥ processes task ef. We have two
cases.

Case 1: Policy = processes task e{. Then task ef is processed under #
at the same time. Therefore, along Q, = {w € Q| 7 serves e{ |} we have
V5|,l = Vf.;h[! r= tO‘

Case 2: Policy = does not process task e{. Let 7 be the end of the busy
period' under . If 7 2 e/, % loses f. So along 2, = {w € 2| 7 does not
serve ej, 7(w) 2 ey} we have V§, , =V{ |, t=ef.

If 7 < ef, starts serving ej at time 7. If no arrivals occur during the
service of ef, x and 7 lose the same tasks and, in addition, = loses e{. So
along Q; = {w € Q| = does not serve ef, 7(w) < e}, first event after 7 is
service} we have V§, , — V§, ,=C;, t=el.

If at least one task, say d, arrives during the service of e}, = starts d.
Because the server is exponential, the services of d under = and e} under
7 end at the same time, and from that point on # follows = and serves
d, if eligible, at the end of the busy cycle under =, in which case the argu-
ment is repeated. Therefore, along Q, = {w € Q| does not serve
ef, 7(w) < e, first event after r is arrival} we have V§, - Vi ,=2C, -
C] = e‘ .

From the preceding analysis we obtain

JE=JF=2CiP(Q;) + (C;— C,)P(Qy), t=ef.)

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 277

Since the arrival and service processes are independent, we get

P(%) = P({w € Q| 7 does not serve e}, 7(w) < e} }))\i ,
U

C)

P(Q,) = P({w € Q| 7 does not serve e!, r(w) < ei}) s
In

From Egs. (2)-(4) and the a§sumptions Ci;>Cy> -+ >Cpn, Cy>

(MN+p)Cy, weget JF>JF t= ek, hence, among all tasks of type i

it is optimal to process the one with the shortest extinction time.

(ii) Let e’ and e’ be tasks of type i and j(i <), respectively, that are eligible
at time fy. Let the deadlines of all eligible tasks except e/ be fixed. Then
the statement of part (ii) of the theorem is a direct consequence of the fol-
lowing two lemmas. |

LeMMA 1: [f e/ = e’ it is optimal to serve e’ instead of e’.

Proor: The arguments needed are exactly the same as those used in the proof
of part (i) of Theorem 1 and are not repeated here. [

»

LEMMA 2: Suppose that for e/ = k < e’ it is optimai? to serve e instead of e’
at ty. Then for e/ = €, where ¢ > k, it is still optimal to serve e'.

Proor: To avoid confusion we will attach to each policy a subscript denoting
the value of e/. For example, 7, would be a policy applied to the set of tasks
with e/ = k.

Consider a policy =, that processes task e/ at time ty. Let 7¢ be the policy
that processes e/ at time ¢, and is identical to w, afterward. Then clearly J* =
J7%, t = t;. By assumption there exists a policy # that processes task e’ at time
fo and does better than y; i.e., there exists a time T such that J™ > J#, t> T.
Consider now a policy #, that is identical to #;, except that it processes e/ = ¢
when (if ever) #; processes e/ = k. Two cases exhaust all possibilities.

Case 1: 7 serves e’.
Case 2: #; does not serve e/.

Using the same arguments as in the proof of part (i) of Theorem 1, we obtain
JESJTFGtz e, but JFE < Jre = Jre, t = T. Thus, JFe> JFe, t = max{T7,¢},
so it is optimal to serve e’ when e/ = ¢. n

According to parts (i) and (ii) of the theorem, at each decision instant we
need only consider the tasks in the set I(fy) = {Jlel>el, vi <Jj}. If L is the
cardinality of 7(#,), to determine which task is optimal we need to make L — 1
pairwise comparisons —in other words, compute L — 1 thresholds. In this paper
we shall not discuss how to compute the thresholds. Note that a threshold Lij
does not only depend on e} ,e,j , but on the whole set of eligible tasks at time ¢,
as well. We illustrate this point by the following example. We have two classes

278 D. G. Pandelis and D. Teneketzis

of tasks with E'(0) = {d], E*(0) = {d,,d,), where d, < d < d,. The penalties
for missed deadlines are C, and'Cz for classes 1 and 2, respectively, where
C, > C,. We have no arrivals (A = 0). Let 7, and r, be the policies that start
with d and d,, respectively, and proceed optimally afterward. According to
Theorem 1, after the first service completion policies 7, and =, give priority to
tasks d; and d, respectively. The expected costs due to policies r, and =, are

J™ = Cyud e #% + Cre 4 + C,e %,
and
J* = Cyude "+ + Cye~" 4 Cye—+,

so the cost difference of policies =, and =, is
J™ = J" = Cz[te‘“dz(dl - d) + Cze~“d' - C,e‘“d.

The threshold ¢, is equal to max{0, ¢{,}, where ¢}, is the value of d, for which
J™ — J*2 = (. Clearly, ¢, depends on d,. :

2.2. The Multiserver Problem

We consider now a queueing system consisting of M parallel servers S,,S5,,...,
Sar- The service times at server S;, i = 1,2, ..., M, are exponentially distributed
with parameter yu;, where p; = uy = - - - = u,,. Tasks arrive in a Poisson stream
of intensity X\, where A < 2¥, 4, and have a deadline with respect to the
beginning of their service. Similar to the single-server problem, tasks belong to
N classes, with tasks of class / incurring a cost C; when they do not meet their
deadlines, where C, > C, > -+ > Cy and Cy > (M + pup)C,. We assume
independence of arrivals, services, and deadlines. Let IT' be the class of non-
idling and nonpreemptive list scheduling strategies, i.e., strategies that use the
servers in a predetermined order. Our objective is to find a policy in IT’ that sat-
isfies the optimality criterion (1).

For decision instants for which the number of eligible tasks is greater than
the number of empty servers S;,S,,, . . .,S;,,., M’ < M, the problem is to deter-
mine the M’ tasks to be processed. It does not matter which task goes to which
server because the deadlines are with respect to the beginning of the service and
the duration of the service does not affect the cost. For decision instants for
which the number of eligible tasks is less than the number of empty servers, the
problem is to determine which servers to use. Each policy in IT’ selects the serv-
ers according to a prespecified priority rule (S,,,S,,, ...,S;,,), where (¢,
5, ...,E) is a permutation of (1,2,...,M). The following theorem describes
the characteristics of the optimal policy for both preceding cases.

THEOREM 2:

(1) Let to be a decision instant for which the number of eligible tasks is
greater than M’, the number of available servers. Consider empty server
Sip» 1 = € < M'. Then

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 279

(ia) Within a class of tasks it is optimal to assign to S;, the one with
the shortest extinction time.

(ib) For each i < j with M'(ty) # &, M/(ty) + O there exists a time
instant (threshold) ly = g{ such that it is optimal to assign to Si,
task ey instead of ef if e{ = t;;, and vice versa otherwise.

(ii) For decision instants for which the number of eligible tasks is less than
the number of available servers the optimal policy in 11’ (the class of
nonidling, nonpreemptive list scheduling strategies) ranks the servers in
decreasing order of their service rates, i.e., uses the fastest available
servers.

Discussion: Note that when the number of eligible tasks is larger than the num-
ber of available processors the properties of the optimal policy stated in The-
orem 2 are essentially identical to those in Theorem 1. Therefore, to select the
M’ tasks to be processed we have to follow the procedure for the single-server
problem M’ times. First we determine the “best” task by computing the appro-
priate thresholds, and then we determine the “best” among the rest of the tasks,
and so on.

PROOF:

(i) The proof of parts (ia) and (ib) is very similar to that of Theorem 1, so
we shall only emphasize points where the two proofs are different.

(ia) Consider a class i of tasks with at least two eligible tasks at time
fo. For every policy = € II’ that assigns to S, task ef, k # 1, at
time f, we construct a policy =’ € II’ as follows: At time tow’
assigns §;, to task ef and is identical to = when = processes tasks
other than e{. When = processes (if ever) task e{ at some server,
x’ processes task ef at the same server. With r being the end of
the busy period® under = (the period for which all servers are busy
under), we have V§, , = Vg, ,, 1 = 1o, for @, = [0 € Q| 7 serves
el},and Vg, , = Vg ,t=ej, for Q, = {w € Q| 7 does not serve
el, r(w) = ei}.

If x does not serve e and 7 < ef, at 7 =’ starts serving e at
some server S, (which is empty under). If no arrivals occur dur-
ing the service of e}, or all arrivals during the first busy period
under 7’ find some other server empty, r and 7’ lose the same
tasks and = loses in addition task e{. So, for

h={we Q| 7 does not serve e, r(w) < ef, no arrivals occur
during the service of e} or all arrivals after 7 during the
first busy period under #’ find some empty server},

we have

M i
V‘{g.l - V&;,t - Ci’ = el‘

280

(ib)

D. G. Pandelis and D. Teneketzis

Foroe 2, =2 - (2, U Q, U Q) it may happen that a task d
arrives during the first busy period under =’ and finds all servers
busy under 7’ and one server free under . Task d may or may not
be lost under =’; thus, along w € Q, we have

Vg‘_,"‘ V(’,""_,ZC'i—Cl, té@{.
Thus, for the cost difference between 7 and =’ we have
JE=JF =2 CiP(Qy) + (Ci = C))P(Qy), t=ef. (&)

Because the arrival and service processes are independent we get

P(23) = P({w € Q| x does not serve e{,(w) < ef})

i ,
X |——— +B™|,
()\“‘#i *) ©

P(Q4) = P({w € Q| does not serve ei, r(w) < et))

A . |
x<)\+#i—B >’ ‘ @

where

B*™ 2 P (all arrivals after r and during the first busy period
under ' find some empty server).

From Egs. (5)-(7) and the assumptions C, > Cy;> -+ >Cuyand
CN> (?\/)\ + [.LM)C] . which lmply that C,' > (()\/)\ + I-‘:) - BTI)CI ,
we get

JI>JF, t=zel;
hence, among all tasks of type i it is optimal to assign to §;, the
one with the shortest extinction time.

Remark: Note that the result of part (ia) is true if the assumption
Cn > (NN + ppy)C, is replaced by

— inf B'/> C] .

Cn>
N ()\ + par ’ell’

The proof is the same as that of Theorem 1 (ii).

So for every policy = € IT’ that is not characterized by prop-
erties (ia) and (ib), we can construct a policy 7’ € IT’ that has prop-
erties (ia) and (ib) and there exists a time T such that J/ < J7,
t=T.

(i) Assume now that the policy 7 € IT, initially considered in part (i) of the

proof, is replaced by the policy =’ € IT” having properties (ia) and (ib).
Suppose that =’ follows the priority rule (SesSeys- 508,81, 80,

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 281

. +»S¢,,_,) with j > i, and let 4 be the first time =’ processes a task
using server §; instead of S; (when S is also available). We construct
policy 7! as follows. =! is identical to =’ until To, Uses §; instead of §;
at time r, and follows the same priority rule as =’ afterward.

Let o; and o; be the first service completion times after 7, at serv-
ers §; and S;, respectively, and r be the first arrival time after 7, for
which all servers S,,,...,S,, are occupied. Then

E(JF -Jr'|1<a,0)=0, =0,
because of the memoryless property of the exponential distribution, and
E(JF —JF |r20,0) =0, t=0.

Therefore, for ¢t = 0 we have
Jr-Jr = me(J," -Jr loisr<oj, 7=17)
T0
X P(o; < 7")P(0; > 7')dF(7’)
+ me(J," -Jr Idj <S7<og,r=r1')
To

X P(o; < 1")P(0; > 7")dF(7’),

where F'is the distribution function of 7. In the preceding we have used
the fact that 7 is independent of o;, 0;, because it only depends on the
service completions at servers Sy,,...,S,, and the arrival process.
Because of the construction of policies 7’ and x! we have

E(Jz’r"'J:"l|¢7157<0,',T=7")‘---‘I.".'(J,"l -JrojsT<a,T=1").

So the cost difference of =’ and #! can be written as

Jr =g =f E(J,"-J,'lloi_<.1<oj,T=T’)
T0

X [P(o;s7)P(0;> 1)~ P(o;s7')P(0; > 7')] dF (7’).

The term in brackets is positive because u; > u;. Therefore, if we prove
that E(Jr =Jr |a, < r < 0;, = 71’) is nonnegative for t = 0, J* —
Jr " will be nonnegative for ¢ = 0.

The task that arrives at time 7’ is processed by S; under =’ and by
S; under x'. Therefore, at time 7 servers S;,,Se,, - . ., S¢,,S;,S; are
busy under =’, while servers S,,,S,,,...,S,,S;, are busy under ='.
Let 77 be the first arrival time after 7’ and o/ and ¢/ the first service
completion times after 7’ at servers S; and S;, respectively. Note that
oj = o; because of the exponentiality of the server. If r” = a/,0/ or

J
o/ < 1” < g/, policies 7’ and =! are coupled at time 7”. If o <7" <9,

282 D. G. Pandelis and D. Teneketzis

at time r” some servers among S,,, S, . . . , 3¢, are busy under both =’
and 7' and, moreover, server S; is busy under #’, but not under »!.
Finally, if 7" < o/, 0/, then along some servers being busy under both
r’ and !, S; is busy under =’ but not under x!, or, if no service has
occurred before 77, S,,,S,,, . .. +StesSjs Siy Se,,, are busy under r’ and
SesSeys - »8¢,, S5, S; are busy under !, Repeating the argument we
see that for any sample path we either have policies »’ and 7! coupled
at some time instant or one more server is occupied under r’. Thus,
there is no way a task can be processed under =’ and lost under !,
although it is possible that a task will be processed under 7! but lost
under =’ If the latter occurs, then at the time this task is lost all serv-
ers are full and the same tasks (if any) are waiting to be served under
both 7’ and =!, so the policies are coupled from that point on. There-
fore, JF' < J*, t= 0.

We can now construct a modification =2 of ! in the same way
as ! modifies 7, i.e., the first time ! prefers S; from S;, 72 uses S;
instead of S; and follows the same priority rule as r! afterward. There-
fore, J ,"2 < J,"l » t 2 0. Continuing the construction of such modified
policies we conclude that JF < J*', r > 0, where 7 follows the priority
rule (SgI,S(Z, ‘e ’S!k!Si’Sjisl/H.ﬂ .o ’SVM-Z)‘

If we keep improving policy # by interchanging the order in each
pair of consecutive servers for which the slowest server has the highest
priority, we will eventually get policy =* that follows the priority rule
(81,52, ...,5u), has properties (ia) and (ib), and J*" < J*, t = 0.
But because J* < J7, t= T, we get J5 < J{, t = T, and the proof is
complete. |

Theorems 1 and 2 state that in both the single-server and multiserver prob-
lems the optimal policy selects the tasks to be processed according to a thresh-
old rule. Note that this threshold rule depends not only on the set of eligible
tasks, but also on the number of servers as well. We illustrate this point by the
following example. We have two classes of tasks with EY0) = {d}, E*0) =
{d,d,}, where d, < d, < d. The penalties for missed deadlines are C, and C,
for classes 1 and 2, respectively, where C, > C,. We assume

1 C 1 1 Cl
2 log C <d-d, < ; log C. 8)
We have no arrivals (A = 0). Let =, and 73 be the policies that start with d and
d,, respectively, and proceed optimally afterward.

Case 1: 1 Server: According to Theorem 1, after the first service completion
policy , gives priority to task d,. The expected cost due to policy =, is

J™ = Coud e + Crerd 4 C,e—nd2,

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 283

After the first service completion policy T2 gives priority to task 4. This is a
direct consequence of the second inequality in Eq. (8). The expected cost due
to policy n, is

J" = Cze_“dz + Czpdze-"dz + C,e““d.
The cost difference of policies 7, and =, is '
J¥ ~J™ = Cype~*(d) — dy) + Cye™4 — C e,

Asdy—=dy, J™ — J" 5 Cre ™2 — Cie~1d < 0, because of the second inequal-
ity in Eq. (8). Therefore when d, is sufficiently close to ds, x, does better than
Ly

Case 2: 2 Servers: According to Theorem 2, after policy =, assigns task d to
server 1, it is optimal to assign task d, to server 2. The expected cost due to
policy =, is

JN = Cze—"dz.

After policy =, assigns task d, to server 1, it is optimal to assign task d, to
server 2. This is a direct consequence of the first inequality in Eq. (8). The
expected cost due to policy =, is ’

JT2 = C,e‘z"d.

The first inequality in Eq. (8) implies that J* < J ", so 7, does better than .
We see from this example that the threshold is different in the two cases, since
when we have one server policy 7, does better than m, for some d, < d,, while
in the case of two servers policy r, is better than m, for all d; < d,.

3. STOCHASTIC DEADLINES
3.1. The Single-Server Problem

Tasks arrive according to a Poisson process of rate A and are served by a sin-
gle exponential server of rate u. The arrival and service processes are indepen-
dent and A < u. Each arriving task has a deadline associated with the beginning
of its service. Contrary to the problem examined in Section 2.1 the deadlines of
arriving tasks are not known to the scheduler. Let d; be the ith task’s deadline.
We assume that d;, i=1,2,..., form a sequence of i.i.d. random variables that
are independent of the arrival and service processes and are finite a.s. We also
assume that the common distribution of {d;] has increasing likelihood ratio.*
The interpretation of this assumption is that a task that has arrived earlier is
more likely to have an earlier extinction time than a task that has arrived later.
Tasks belong to N different classes, with tasks of class ; incurring a cost C;
when they do not meet their deadlines, where C, > C, > --- > Cy and Cy >
(AN + u)C,. Our objective is to find a policy that is optimal within the set of
nonidling and nonpreemptive policies according to optimality criterion (n.

284 D. G. Péndelis and D. Teneketzis

For a decision instant ¢, we denote by M'(ty) the set of eligible tasks of
type i. If M'(1,) # O, we define A‘(ty) = (ai,ai}, n; = 1, to be the set of
arrival times of eligible tasks of type i at time fo arranged in increasing order.
With a denoting both the time instant @/ and the task with arrival time aj, the
properties of the optimal policy are given by the- following theorem.

THEOREM 3: Consider a decision instant ty. Then
(i) Within a class of tasks it is optimal to process the one with the earliest
arrival time (i.e., the policy FCFS is optimal).

(ii) For each i < j with M'(ty) + &, M*(ty) #+ O there exists a time instant
(threshold) t;; = af such that it is optimal to process task ai instead of
ai ifai < t,j, and vice versa otherwise.

Discussion: By parts (i) and (ii) of the theorem we conclude that the search for
the optimal task is confined to the set I’(£,) = (jlal > af, vi< j}. With L
being the cardinality of I’(#,), to determine the optimal task we need to make
L ~ 1 pairwise comparisons, i.e., compute L — 1 thresholds. The way to com-
pute these thresholds will not be discussed in this paper.

Proor:

(i) For a class i with at least two eligible tasks at time #,, let r and # be
the policies that at time #, process tasks a/, and ai, respectively, and
afterward proceed optimally. With e,‘;,,e{ denoting the extinction times
of a;,,a{ and f},, f! their respective probability densities, we get

Jr=JF =f E(JF—Jf|ei=k, el = Of k) fi(e)dk de
k

=ty v b=k
+ f“ T E(IF = JF |eh =k, el = O)fF (K)FI(0) dk d.
k=ty J t=k
Because of the construction of policies = and 7, we have
E(JF = J7 e, =k,el=0)=E(JF - I\ el = t,ef =k)
=—E(J] —J]|el = k,el, = ¢).
So the cost difference of = and # can be written as

J‘r_Jtizf E(Jtt—-]li,e;=k,e,ln=2)
k

=g v =k

X (ST L) = FL(k)fi(0)) dk de. 9)

The assumption that the distribution of the deadlines has increasing
likelihood ratio implies that e/ a e,. Then, because k < ¢, we have

fnlk) _ful® o -
Tt = 7icey =SSm0 = s (

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 285

Construct now a policy =’ as follows: 1/ processes aj at time ¢, and is
identical to = when = processes tasks other than af. When = processes
(if ever) task af, 7’ processes task ay,, if it is still eligible, and the task
with the earliest arrival time, if task a, is not eligible. Then for k < ¢
it can be shown that :

E(Jr=Jl el =ke\=t,k<t)>0, t=¢ (1)

(the proof of Eq. (11) is identical to that of part (i) of Theorem 1).
Because both policies r’ and # process task af at time ¢, and # acts
optimally afterward, while =’ does not necessarily do so, there exists a
time T, such that

E(JF —JF el =kel =0,k < £)=0, =T, 12)

From Egs. (9)-(12) and the assumption that the deadlines are finite a_s.
we conclude that there exists a time T such that J¥>JF, t= T; hence,
among tasks of type i it is optimal to process the one with the earliest
arrival time.

(ii) Let a’ and a‘ be tasks of type iand j (i <), respectively, that are eli-
gible at time #,. Let the arrival times of all eligible tasks except a’ be
fixed. Then part (ii) of the theorem follows from the next two lemmas.

LemMA 3: If a’ < a/ it is optimal to serve a' instead of a’.
Proor: The proof is similar to that of part (i) and is omitted. [|

LEMMA 4: Suppose that fora’ = k> a’ it is optimal to serve a’ instead of a'.
Then for a’ = ¢, where ¢ > k, it is still optimal to serve a’.

PROOF: As in Lemma 2 we will attach to each policy a subscript denoting the
value of a@’. For a policy =, that processes task ¢’ at time fo, let m; be the policy
that processes a‘ at time lo and is identical to =, afterward. Then J," = J[k,
¢ = {o. By assumption we know that there exists a policy #; that processes task
a’ at time f, and is better than Tk; i.e., there exists a time T, such that J >
JF t = T,. Construct now policy %, as follows. #, is identical to Tis €Xcept
that it processes a‘ = ¢ when (if ever) #; processes a’ = k. The construction
of such a policy is possible because, if a’ is served under Tk, it is also eligible
under 7,, since, if d is its deadline, its extinction time under T is k + d, which
is less than ¢ + d, its extinction time under #,. It can be shown (see proof of
Lemma 2) that E(JF — JFe |d=d')>0,t> ¢+ d" Since d is finite a.s. the
preceding relation implies that there exists a time T, such that Jf — JF7e > 0,
12T But Jit < Jrk=Jre, t= T, Therefore, J7* > JF¢, t = max(T}, T}, so
it is optimal to serve a/ when a‘ = ¢.]

3.2. The Multiserver Problem

In this section we turn to the problem of scheduling tasks in a queueing system
consisting of M parallel exponential servers Sy,S,, ..., Sy, with server S; hav-

286 D. G. Pandelis and D. Teneketzis

ing rate u;, where u) = puy = - -- = u,,. The interarrival times are also exponen-
tial with parameter A, where A < X, u,. Each arriving task has a deadline
with respect to the beginning of its service. The deadline is not known to the
scheduler, but instead its probability distribution is available. We assume that
the deadlines form an i.i.d. sequence of random variables that are independent
of the arrival and service processes, are finite a.s., and have increasing likeli-
hood ratio. Tasks belong to one of N classes, with tasks of class i incurring a
penalty C; when they miss their deadlines, where C, > C, > --- > Cy and
Cn > (AN + up) C. Our objective is to find a nonidling and nonpreemptive
list policy that is optimal in the sense of criterion (1).

We again have to consider decision instants where the number of eligible
tasks is greater than the number of empty servers SiSigs -5 Siy, M' = M,
and decision instants where the number of eligible tasks is less than the num-
ber of empty servers. The optimal policy is characterized by the properties given
in the following theorem.

THEOREM 4;

(i) Let ty be a decision instant such that the number of eligible tasks is
greater than M', the number of available servers. Consider empty server
Si» 1 < £ <M’ Then

(ia) Within a class of tasks it is optimal to assign to S;, the one with
the earliest arrival time.

(ib) For each i < j with M/(t,) + &, M(ty) # O there exists a time
instant (threshold) t;; = af such that it is optimal to assign to S;,
task ai instead of af if a{ < t;;, and vice versa otherwise.

(i) For decision instants for which the number of eligible tasks is less than
the number of available servers the optimal policy ranks the servers in
decreasing order of their service rates, i.e., uses the fastest available
servers.

Discussion: When the number of eligible tasks is greater than the number M’
of empty servers, we select the M’ tasks to be processed one by one by follow-
ing the procedure for the single-server problem M’ times. First we compute the
appropriate thresholds to determine the “best” task, then we repeat for the
“best” among the remaining tasks, and so on.

Proor: The proof of parts (ia) and (ib) is the same as that of Theorem 3 and
is omitted. For decision instants for which the number of eligible tasks is less
than the number of available servers the problem is not different from the one
where the deadlines are known to the scheduler, because the extinction times of
the waiting tasks do not affect the cost of a given policy, since the deadlines are
with respect to the beginning of the service and all the tasks are served. So for
the proof we refer the reader to the proof of Theorem 2. |

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 287

4. COUNTEREXAMPLES TO EXTENSIONS

In this section we briefly discuss two possible extensions of the problems pre-
sented in Section 2: (i) a problem that includes a routing decision in addition to
scheduling and (ii) a scheduling problem with switching cost. We find out that
these problems lack a nice structure, the first one because of the highly nonlin-
ear cost function, and the second one because of the inclusion of the switching
cost.
We discuss each problem separately starting with the problem that includes
a routing decision in addition to scheduling. Arriving tasks have to be routed
to one of two similar exponential servers. Each task belongs to one of N dif-
ferent classes and has a deadline that becomes known at the arrival instant. Let
d; be the ith task’s deadline. We assume that di,i=12,..., forma sequence
of independent random variables that are also independent of the arrival and
service processes. No distribution on the deadlines of future arrivals is assumed.
If the service of a task i does not begin by its extinction time, the task is lost and
incurs a cost C;, where C, > Cy> -+ > Cu. The objective is to find a routing
strategy v* as well as a nonidling, nonpreemptive policy #* € I’ such that for
any other routing strategy v and any other policy r € IT’
Liminf(J* - J7""") >0, (13)

oo

where J/'™ is the expected cost under policy (v, =) until time ¢, i.e.,

N .
JIT=3 GE(X]™),
i=]

X[;™ being the number of type i tasks lost under policy (y,) until time ¢.
After a routing strategy v is fixed this problem reduces (for each server) to that
of Section 2. Thus, we restrict attention to the routing problem. For the rout-
ing problem it is well known (see Ephremides, Varaiya, and Walrand [9]) that
when the tasks incur a fixed holding cost per unit time during their waiting time,
the optimal routing strategy sends tasks to the server with the shortest queue
length. This result no longer holds when the tasks have a deadline with respect
to the beginning of their service. The optimal decision does not depend on the
queue lengths at the two servers, but on the deadlines of the tasks present in the
system. We illustrate this by the following example. We have deterministic dead-
lines, one class of tasks incurring a cost of one unit when they miss their dead-
lines, the two servers have rate p = 1, and there are no arrivals (A = 0). The
sets of tasks waiting in servers 1 and 2 at time O are E,(0) = {d,} and E,(0) =
{d>,d;], respectively, where d, < d;. A task with extinction time d,, where
dy < d\,d,, is to be assigned to one of the two servers. Let Jy,i,k = 1,2, be the
expected cost incurred at server & by the policy that assigns task d, to server i
and then, according to Theorem 1, serves the tasks in increasing order of their
extinction times. Then

288 D. G. Pandelis and D. Teneketzis

— p—d — p—d —
Jy=e™", J2=e"D, Jyy =0,
Jp=2eB e e By gdeD

and the cost difference between the policy that routes d, to server 1 and the
policy that prefers server 2 is

Ju+Ja— Uy +Jp)=e N —e %~ de b,

Routing to server 1 is optimal when d; > d,, but for d, < d, and d, large
enough it is optimal to route to server 2, the server with the largest queue length.

Next we consider the problem of Section 2.1 and, in addition, we assume
that a cost K is incurred whenever the server switches from one class of tasks
to another. The existence of such a switching cost usually complicates even
problems with linear costs, so we would expect the same to happen to our prob-
lem. Indeed, the following example shows that Theorem 1 is not valid when a
switching cost is included. We have two classes of tasks with EY(0) = (d,],
E*(0) = (d,)}, where d; < d,. The penalties for missed deadlines are C, and C,
for classes 1 and 2, respectively, where C, > C,. We have no arrivals (A = 0).
Then, according to Theorem 1, when no switching cost is present the optimal
policy processes task d, first. Let =, and =, be the policies that start with d,
and d,, respectively. The expected costs incurred by these policies when the
switching cost K is included are

J" = K(1 — e~*%) 4 Cye~r, J72=K(1 —e) 4 Cje~rd,
so the cost difference of policies 7, and , is
JT — J* = K(e“‘d‘ — e—“dz) + Cze—"'dz - C,e"‘d‘.

With X sufficiently large this difference becomes positive, so it is optimal to
start with d,, a result that does not agree with Theorem 1.

5. CONCLUSIONS

We have considered the problem of optimally scheduling tasks with priorities
and deadlines (deterministic and stochastic) in both a single-server and a multi-
server queueing system. Using interchange arguments we showed that thresh-
old policies are optimal. The computation of the thresholds describing the
optimal policies is difficult, because the thresholds depend on the deadlines of
all the tasks present in the system. Finally, simple counterexamples were given
to show that the properties of the optimal policy are not preserved when a switch-
ing penalty is included and that optimal routing strategies under the assumption
of linear costs are no longer optimal when strict deadlines are considered.

Notes

1. We define the end of the busy period to be the first time when the server becomes idle.
2. The problem of the existence of an optimal policy will not be discussed in this work. We
assume that an optimal policy exists.

SCHEDULING IN PRIORITY QUEUES WITH DEADLINES 289

3. We define the end of the busy period to be the first time when at least one server becomes

idle.

4, Let X and Y be nonnegative random variables with densities f and g, respectively. We say

that X is larger than Y in likelihood ratio and write X 1.?1'1 Y if the ratio of their respective densities

J{(x)/g(x) is nondecreasing in x. For a nonnegative random variable X let X, denote its residual life
after ¢ units. We say that X has increasing likelihood ratio if X, decreases in likelihood ratio as ¢
increases.

References

1.

2.

10.

1.

12,

13.
14.

15.

Baccelli, F., Boyer, P., & Hebuterne, G. (1984). Single server queues with impatient custom-
ers. Advances in Applied Probability 16: 887-905.

Baccelli, F. & Trivedi, K.S. (1985). A single server queue in a hard rml time environment. Oper-
ations Research Letters 4(4): 161-168.

. Bhattacharya, P.P. & Ephremides, A. (1989). Optimal scheduling with strict deadlines. JEEE

Transactions on Automatic Control 34: 721-728.

. Bhattacharya, P.P. & Ephremides, A. (1991). Optimal allocation of a server between two queues

with due times. JEEE Transactions on Automatic Control 36: 1417-1423.

. Charlot, F. & Pujolle, G. (1978). Recurrence in single server queues with impatient customers.

Annales de I’Institut Henri Poincaré Sec. B XIV: 399-410.

. Cho, Y. & Sahni, S. (1981). Preemptive scheduling of independent jobs with release and due

dates on open, flow and job shops. Operations Research 29: 511-522. -

. Conway, R.W., Maxwell, W.L., & Miller, L.W. (1967). Theory of scheduling. Reading, MA:

Addison-Wesley.

. Derman, C., Lieberman, G.J., & Ross, S.M. (1978). A renewal decision problem. Management

Science 24: 554-563.

. Ephremides, A., Varaiya, P., & Walrand, J.C. (1980). A simple dynamic routing problem. IEEE

Transactions on Automatic Control AC-25: 690-693.

Huang, C.-C. & Weiss, G. (1992). Scheduling jobs with stochastic processing times and due dates
to minimize total tardiness. Preprint.

Panwar, S.S., Towsley, D., & Wolff, J.K. (1988). Optimal scheduling policies for a class of
queues with customer deadlines to the beginning of service. Journal of Association for Com-
puting Machinery 35(4): 832-844.

Pinedo, M. (1983). Stochastic scheduling with release dates and due dates. Operations Research
31: 559-572.

Ross, S. (1983). Stochastic processes. New York: Wiley.

Stanford, R.E. (1979). Reneging phenomena in single channel queues. Mathematics of Oper-
ations Research 4: 162-178.

Takacs, L. (1974). A single server queue with limited virtual waiting time. Journal of Applied
Probability 11: 612-617.

