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Abstract— We consider electricity wholesale markets with
multiple strategic users that possess localized information
about the electricity network and can be either producers
or consumers. The objective is to design a mechanism that
maximizes the social welfare (the sum of the users’ utilities)
and has the following additional features. It satisfies the users’
informational constraints along with the constraints imposed
by the lines’ thermal capacity limit and the network’s physical
laws (Kirchhoff’s laws); furthermore it is budget balanced,
individually rational, and price efficient. Using ideas from the
theory of local public goods and auctions, we construct a social
welfare maximizing mechanism that possesses all of the above
features at equilibrium. We present an intuitive interpretation
of the mechanism and discuss possible extensions of the model
considered in the paper.

I. INTRODUCTION

The electricity industry has been traditionally regulated
by government to run under a predetermined-price cost-
minimizing monopoly. In past decades, there has been world-
wide tendency for restructuring the industry toward a free
competitive market [1]. As a result of restructuring, different
sectors of the industry, i.e. generation, transmission and
distribution (retailers), have been separated and are run by
different entities (vertical disintegration). Moreover, in the
generation sector wholesale markets (e.g spot and day-ahead
markets) with multiple generators (producers) have been
introduced (horizontal disintegration), thus resulting in an
oligopoly of generators in the wholesale market instead of a
monopoly. There have been different practices of electricity
restructuring from California and Pennsylvania-New Jersey-
Maryland (PJM) to British and Australian markets.

Designing an efficient wholesale market in the restructured
electricity industry is a formidable task for the following
reasons. i) As a trading commodity, electricity has unique
features [2]. In particular, network flows are interconnected
through Kirchhoff’s laws (KVL and KCL). Furthermore, the
flows are limited by thermal capacity constraints of the lines.
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Kirchoff’s laws introduce a loop flow effect which, combined
with the lines’ thermal capacity constraints, couple the
producers’ dispatch and limit the set of feasible dispatches
to a non-convex set. Therefore, loop flow effect ties the flow
of power in each line to all the other flows in the network.
Moreover, the network interconnection among producers
results in externalities both negative (dispatch in the same
direction) and positive (dispatch in the opposite directions).
As a result, production of electricity at each node is tied
to production at all other nodes. Consequently a bilateral
contract between a generation company and demand will
affect the possible dispatch of electricity at all other nodes.
Therefore, allocating optimal dispatch of electricity, con-
strained by the electricity transmission network constraints,
cannot be achieved by free markets [3]. ii) The restructuring
of the electricity industry resulted in an oligopoly of strategic
producers with market power. Generation companies can
manipulate the market so as to increase their own profit
at the cost of reducing the social welfare. Market power
was exercised by sellers even in situations where they had
less than 10% market share (see [4], [5]). The structural
flaws of electricity markets under deregulation have added to
the potential for market power and gaming [6]. The specific
features of electricity markets which give rise to gaming are
lack of storage, inelasticity (or lack of elasticity) of demand1,
and, potentially, the network’s structure. Electricity cannot be
stored commercially. Therefore, any change in the demand
for electricity from the predicted amount must be met in real-
time. This fact combined with the inelasticity of demand
along with limits on supply (that is constrained by the
generation capacity) give generation companies the power to
manipulate the market, and result in very high prices in peak
demand [9], [10]. Network constraints can potentially give
market power to producers for the following reasons. Due to
transmission limits and congested lines, part of the network
may become isolated from rest of the network. This results
in market power for small local producers. Technological
developments such as smart grids (that introduce demand

1Inelastic demand has been observed in real-time markets and congested
day-ahead markets (see [7], [8]).
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response and elastic demand to the wholesale market) can
help in overcoming some of the structural flaws of electricity
markets.

The question of interest in this paper is how to design
markets for efficient dispatch of electricity considering all
the above challenges. We aim at designing markets that are:
1) budget balanced (the payments by all users add up to
zero); 2) individually rational (users voluntarily participate
in the production/consumption process because their util-
ity at equilibrium is not less than their utility from non-
participation); 3) price efficient (the price a producer is
paid, or respectively a consumer pays, per unit of power
produced, or respectively consumed, is equal to sum of
his marginal cost of production, respectively his marginal
utility of consumption, the saturation price for his limited
production capacity, respectively his limited consumption
capacity, and the congestion price of the line to which he
is connected.); and 4) social welfare maximizing. We also
consider information constraints of the users by assuming
that each user has only local knowledge about the topology
of the network and the characteristics of the lines that
connect him with his immediate neighbors.

A. Existing Approaches to the Design of Electricity Markets
with Network Constraints

Currently, there are two approaches that incorporate net-
work constraints in the design of electricity markets [11].
These two approaches use two different set of prices and
they are: (1) the integrated market design that uses nodal
prices (one price for each node in the network); and (2)
the coordinated market design that uses prices for allocating
rights (one price for transmission rights between any two
nodes) and prices for allocating electricity dispatch (one
price for each node in the network).

The most common practice of integrated market design
(nodal pricing) is Supply Function (SF) auctions [12]–[14].
In these auctions, producers bid their entire cost function to
the system operator; the system operator then calculates the
most economically efficient dispatch (that is, he clears the
market by dispatching minimum cost first [15], [16]), subject
to network constraints. The price paid to each producer is
the marginal cost of production at the node the producer is
located in. SF auctions are used to clear multiple possible
demands due to demand uncertainty or demand variation
during the day (see [12]–[14]). In general, SF auctions are
budget balanced and individually rational, but they have
a range of equilibria which do not implement the social
welfare maximizing outcome and they are not necessarily
price efficient [15]. The inefficiency of SF auctions has
been studied further within the context of polynomial supply
functions [17], oligopoly models with capacity constraints
[18], [19], models with a pivotal bidder [20], models with
limited number of price bids [21], models with demand
uncertainty [22], and, within the context of duopoly, models
with finite piece-wise linear cost function [23]. A review of
the SF auctions literature is provided in [24].

Cournot auctions have been used to approximate SF
electricity auctions [12]. These auctions are price efficient
as the price at all Nash equilibria is equal to marginal
cost of production, they are budget balance, and they are
individually rational, but they do not achieve social welfare
maximizing allocations at Nash equilibria [13], [14].

For coordinated market design, first the transmission rights
and next the electricity dispatches are allocated. Transmis-
sion rights are allocated to all producers simultaneously
using a pooling auction; this is because transmission rights
cannot be traded bilaterally and independently as they are
interconnected because of the loop flow effect that is due
to Kirchhoff’s current and voltage laws (KCL, KVL). Co-
ordinated market design is proposed in the form of physical
transmission right (PTR), financial transmission right (FTR)
and flow gate right (FGR) [25]. In PTR, the physical capacity
of a line is allocated to generation companies to use it
in order to send electricity to other nodes in the network.
In FTR only the financial right of the lines is allocated;
the owner is paid for his amount of FTR according to the
difference in the price of electricity at the two ends of the
line. Similar to FTR, FGR does not allocate physical rights,
but the price paid to the holder is the marginal improvement
in social welfare due to the increase in the capacity of the
line. FGR is the correct signal for investment to increase the
capacity of the line.

In competitive markets with full information, both the
integrated market design and the coordinated market design
lead to social welfare maximizing outcome (See [26]- [27]
for integrated, and [28] for coordinated). When market power
exists (even under full –information) the current design
of these markets is not efficient [29] and the comparison
between the performance of the two approaches is not
completely known [11]. The problem becomes even more
challenging when a producer owns multiple electricity gen-
eration firms located at different nodes, or when there are
multiple producers located at a single node [27]. Similarly,
comparison among different approaches to coordinated mar-
kets is not clear [30]. Holders of the physical right can
choose not to use them so as to increase the price difference
at the two ends of the line, while holders of the financial right
have incentive to under-produce electricity at the congested
nodes so as to increase price in those nodes and collect more
payment. Rules such as use-it-or-loose-it or use-it-or-sell-it
are introduced to reduce such market manipulations.

The above discussion demonstrates the necessity for de-
signing efficient electricity wholesale markets with network
constraints which is the topic of this paper.

Our approach to designing efficient electricity wholesale
markets is based on mechanism design for local public goods
problems. In electricity networks, the actions (e.g. power
production, power consumption) taken at a network node
directly influence the actions and utilities of strategic users
at that node and the immediate neighborhood of the node
(due to the physical laws of power flows), thus, the design
of electricity markets is a local public goods problem.
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B. Existing Results for Mechanism Design

There exists a large literature on local public goods within
the context of local public good provisioning by various
municipalities that follows seminal work of [31]. All this
literature considers network problems in which strategic
agents/individuals decide where to locate; the choice of their
location is based on their information about the revenue
and expenditure patterns (on local public goods) of various
municipalities. In contrast to the above literature, in this
paper we address the problem of determining the optimal
levels of local public goods for a given network. Therefore,
our problem is distinctly different from those considered
in the literature following [31]. Recently, [32] and [33]
investigated the influence of selfish/strategic users’ behavior
on the provision of local public goods in networks with fixed
links among users. They analyzed Nash Equilibria (NE) of
the game where the users’ utilities are linear and each user’s
strategy is to choose the level of effort that maximizes his
own payoff from the provisioning of the local public good.
It was shown in [32] and [33] that none of the NE of the
aforementioned games result in provisioning of local public
goods that is social welfare maximizing; thus, the work
presented in [32] and [33] does not achieve our goals (stated
in Section II).

In this paper, we consider a network model that is more
general than the model of [32] and [33]. Specifically, we
consider a fixed network where the actions taken at each
node n affect the utilities of all the strategic users in node n
and all the nodes that are directly connected to n. Further-
more, each user’s utility is quasilinear (convex plus linear, in
contrast to [32]- [33] where the agents’ utilities are linear)
and is his own private information. The constraints due to the
physical laws governing electricity networks are present in
our model but not in [32] and [33]. Our approach to the local
public goods problem is different than that of [32] and [33];
it is based on mechanism design/implementation theory. The
objectives of our paper are different from those of [32] and
[33].

Prior work on mechanism design for public goods (not
local public goods) has appeared in [34]–[37]. Our work
is inspired by [35]. In [35], Hurwicz presents a mecha-
nism that implements in NE the Lindahl correspondence
(social welfare correspondence). Our problem is different
from Hurwicz’s in two key aspects: (1) our model includes
the physical constraints imposed by Kirchoff’s laws; such
constraints are unique to electricity networks and are not
present in Hurwicz’s model (as well as in [34], [34], [36],
[37]). As a result, the mechanism design problem is distinctly
different and much more challenging than that of [35] (as
well as those of [34], [34]–[37]). (2) We consider a local
public goods problem as opposed to a public goods problem
(that is studied in [35]). As a result, Hurwicz’s ideas and
methodology can not be directly used to obtain our objectives
(stated in Section II) even in the absence of the physical
constraints imposed by Kirchoff’s laws.

Prior work on mechanism design for local public goods

can be found in [38]. The key difference between [38] and
our paper is in the model. The network in [38] investigates
local public goods problems motivated primarily by power
allocation in wireless networks, thus the model of [38]
does not include constraints due to Kirchoff’s laws which,
as stated above, are unique to electricity networks. Such
constraints result in a problem that is distinctly different from
and more difficult than that of [38].

C. Contribution

We design a mechanism that has the following features:
It satisfies the strategic producers’ and consumers’ informa-
tional constraints, the network’s physical laws (Kirchhoff’s
laws) and the lines’ thermal capacity constraints. Further-
more, it is social welfare maximizing, budget-balanced at
equilibrium, individually rational, and price-efficient.

To the best of our knowledge, a mechanism possessing all
the above desirable features does not currently exist in the
literature.

D. Organization

The rest of the paper is organized as follows. We present
the network model and our objective in Section II. Then,
in Section (III), we discuss how the electricity network’s
features affect the design of the market. In Section IV, we
present our market design and interpret it. We establish its
efficiency, and we compare it with the mechanisms currently
used in electricity markets. In Section V, we extend the
results to sparse networks. We conclude in Section VI where
we present some open problems associated with the proposed
mechanism.

II. MODEL AND OBJECTIVE

A. The Model

We consider an electricity network with K interconnected
nodes, N strategic users located in these nodes, and one
network manager, called the independent system operator
(ISO). We denote by K := {1, 2, ...,K} the set of the
network’s nodes and by N: = {1, 2, ..., N} the set of the
network’s users. The neighborhood of node k, denoted by
Rk, is the set of nodes that are directly connected to node k
including node k itself. Each user may be both producer or
consumer. We denote by en, n ∈ N , user n’s energy con-
sumption/production. If en > 0 (respectively, en < 0) user n
is a producer (respectively a consumer). We assume that for
n ∈ N , −wn ≤ en ≤ xn where xn is user n’s production
capacity and |wn| is his maximum consumption capacity.
User n’s aggregate utility function is given by un(en)− tn,
where un(en) describes his cost from producing/consuming
energy en and tn denotes his tax/subsidy as a result of the
production/consumption process taking place in the network.
The cost functions un : R→ R, n ∈ N , are strictly convex
and increasing with un(0) = 0, and tn ∈ R. The set of
users in node k is denoted by Nk. In this paper we initially
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assume that Nk = 1, later in Section V we consider sparse
networks where Nk ≤ 1. The operating angle of node k is
denoted by θk. There is one slack bus/slack node denoted by
n0 the operating angle of which is θn0

= 0. The operating
angles of the remaining nodes are measures with respect to
θn0 . The flow of power from node k to node j is determined
by a function f(θk−θj) and is denoted by Ikj . In this paper
we consider a second-order approximation of the power flow
Ikj that is given by

Ikj = Bkj × (θk − θj) +
1

2
Gkj(θk − θj)2, (1)

where Bkj (respectively, Gkj) is that first derivative (re-
spectively, the second derivative) of fkj(.) with respect to
its argument, evaluated at zero. In this approximation, the
second-order term captures the loss of power along the line
from node k to node j. The total loss in the line connecting
nodes k and j is Ikj + Ijk = Gkj(θk − θj)2. The power
flow Ikj can not exceed the thermal capacity of the line
connecting node k and j. We denote this thermal capacity
by Lkj , and we must have Ikj ≤ Lkj for all k, j ∈ K.

The information structure of the model (who knows what)
is as follows. Each user n knows Rn and his cost, un ∈ U ,
where U is the space of function u : R → R that are
strictly convex and increasing with u(0) = 0. The space
U is common knowledge among all users, whereas un is
known only by user n, n ∈ N . We assume a non-Bayesian
environment, that is, we assume no (prior) pdf on U . Only
the users who are in Rn0 know that n0 is the slack node (i.e.
they know θn0 = 0); the users who are not in Rn0 only know
that there exists a slack node but do not know which node it
is. The operating angles θk of nodes k 6= n0 are measured
with respect to θn0

. A user located in node k knows Bkj and
Gkj for all j ∈ Rk, that is, user n, located in node k, knows
the precise structure of the local network that connects him
with his neighbors in Rn. The ISO knows the topology of
the whole network along with all the parameters Bkj , Gkj ,
k ∈ N, j ∈ N , but does not know the users’ utilities.

The above discussion completes the specification of the
network model along with the description of the information
available to the strategic users and the ISO.

Remark II.1. We use the second-order approximation model
because: (1) We can construct an efficient mechanism for this
model; and (2) the performance achieved using this model is
very close to that achieved by the full AC model (see Section
VI).

B. Objective

Our objective is to design a set of rules (a mechanism)
according to which the strategic users (consumers and pro-
ducers) and the ISO interact through the electricity network.
The mechanism must take into account the network’s in-
formation structure and the network constraints (the lines’
thermal constraints), its physical laws (Kirchoff’s laws), and
must possess certain properties which we will state below.

A mechanism consists of two components:
(1) A message/strategy space M =M1×M2× ...×MN ,

that is a communication alphabet through which the strategic
users send information to the ISO; Mi denotes the message
space/communication alphabet of user i, i ∈ N .

(2) An outcome function that determines the power gen-
eration/power consumption e, e := (e1, e2, ..., eN ) along
with monetary incentives t, t := (t1, t2, ..., tN ), that are
taxes or subsidies provided to the users after the commu-
nication/message exchange process between the strategic
users and the ISO terminates. The power generation/power
consumption profile e and the tax/subsidy profile t are
functions of the users’ terminal/final messages to the ISO.
Such a mechanism induces a game among the strategic users.
We consider Nash Equilibrium (NE) as the solution concept
of this game. At the end of this section we discuss why NE
is an appropriate solution concept for our problem.

We want to design a mechanism that possesses the fol-
lowing properties:

(P1) Budget Balance: Let ti(m∗) denote the payment to
user i, i = 1, 2, ..., N at a NE m∗ := (m∗1,m

∗
2, ...,m

∗
N )

of the game induced by the mechanism. We must have∑N
i=1 ti(m

∗) = 0 for all m∗ ∈M∗, where M∗ is the set of
NE of the game induced by the mechanism.

(P2) Individual Rationality: Let ui(e
∗
i (m

∗)) − ti(m
∗)

denote the aggregate cost of user i, i ∈ N , at a NE
of the game induced by the mechanism. We must have
ui(ei(m

∗)) − ti(m∗) ≤ 0 for all m∗ ∈ M∗, for all i ∈ N ,
where 0 is the aggregate cost of user i when he decides not to
participate in the production/consumption process (Note that
non-positive aggregate cost implies non- negative aggregate
utility/reward).

production/power consumption of agent i, i ∈ N ,
corresponding to NE m∗ ∈ M∗, and let e(m∗) :=
(e1(m

∗), ..., eN (m∗)) denote the power production/power
consumption profile corresponding to m∗ ∈ M∗. We must
have e(m∗) = ê, ê := (ê1, ê2, ..., êN ) for all m∗ ∈ M∗,
where ê is the solution of the centralized optimization prob-
lem (Socially Optimal I) presented in Section II-C below.

(P4) Price Efficiency: The price pi(m∗) producer i is paid
(respectively consumer i pays) per unit of power produced
(respectively, consumed) at any NE m∗ ∈ M∗ be equal to
the sum of his marginal cost of production (respectively,
his marginal utility of consumption), the saturation price
for his limited production capacity (respectively, his limited
consumption capacity), and the congestion price of the lines
to which he is connected.

We call any mechanism that possess properties (P1)-
(P4) efficient. Thus, our objective is to design an efficient
mechanism for the electricity network model described in
Section II-A.

Remark II.2. NE is the solution concept/equilibrium con-
cept used in most studies of electricity networks with strate-
gic users. (See [11], [39], [40] and references therein).
The above-mentioned papers consider electricity markets
with strategic users and symmetric information. They ar-
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gue that by eliminating information asymmetries and their
corresponding information rent one can develop a basic
understanding of electricity market problems and develop
rigorous analytical results. For example, [40] argues that
symmetric information of the bidders (GenCos) is a common
rationale and a reasonable assumption for oligopolistic
electricity markets, because GenCos monitor perfectly each
others’ technology and capacity. In our work, we assume that
users (GenCos) have asymmetric information (even if they
can monitor perfectly each others’ technology and capacity,
they do not know each others’ valuation/utilities), thus the
game induced by the mechanism is one of asymmetric
information where the environment is non-Bayesian. For this
situation NE is still an appropriate solution concept because
according to Nash (Nash’s PhD thesis [41], pages 21-24),
NE can be interpreted in two ways: 1. As the solution con-
cept/outcome of a game of complete/symmetric information
when all agents are rational. 2. As the result of a game of
asymmetric information where strategic agents are involved
in an unspecified message exchange process in which they
grope their way to a stationary message and in which the
Nash property (NE) is a necessary condition for stationarity.
This is the so-called ”mass-action” interpretation of NE (See
also [42] page 644). It is the second interpretation of NE
that we adopt in this paper.

We conclude this section on modeling and objectives
by presenting below the centralized optimization problem
”Socially Optimal I” that will be useful to the discovery of
the properties of the mechanism we present in Section IV.

C. Problem Social Optimal I

The socially optimal (centralized) electricity dispatch
problem is

min
θn,n∈N

∑
n∈N

un(en(θRn)) (Socially Optimal I)

s.t. − wn ≤ en ≤ xn ∀n ∈ N (2)
Ikj ≤ Lkj ∀k, j ∈ K (3)

where

θRn := (θk, k ∈ Rn) (4)

Ikj = Bkj × (θk − θj) +
1

2
Gkj(θk − θj)2 ∀k, j ∈ K

(5)

en(θRn) =
∑
k∈Rn

Ink (6)

III. EFFECT OF NETWORK ON ELECTRICITY MARKETS

The electricity network model in Section II-A has the
following features that affect the design of the market.

First, the lines have limited capacity. The capacity of a line
limits the trade between its ends. If a line is congested, then
the markets on the two sides of the line are not connected,
instead they are two separate local markets. The producers

located on each side have local power and the markets have
separate prices.

Second, the flow of electricity is subject to loop flow
constraints (KVL and KCL). These constraints make elec-
tricity networks unique and different from any other network;
they have complicated effects as they couple all flows and
productions in the network to each other. As a result of the
this coupling of productions due to the Kirchhoff’s laws,
a producer and a consumer cannot do a separate bilateral
trade independent of the others. Instead, all trades should
be cleared at the same time and in a pooling market. Thus,
the network becomes a public good whose use should be
determined by all the producers and consumers together.

Third, the lines have loss in delivery of electricity power.
This loss is a function of the total power flow through the
line. The power delivered at the one end of the line is the
total power injected at the opposite end minus this loss. In
markets, this loss should be shared between the buyer and
the seller and this is reflected in the electricity prices. For
example, consider a simple network of one producer and
one consumer connected with a lossy line. If the trading
commodity is electricity at the producer’s node, then the
consumer should endogenize the cost of loss in his bids.
On the other hand, if the trading commodity is electricity at
the consumer’s node then the producer should endogenize
the cost of loss in her bids. Alternatively, the producer and
consumer can trade electricity at some point in the line
between them. In this case they do loss sharing. Based
on this simple example, one can observe that the social
welfare maximizing solution is the same for all cases but
the payments of producers and consumers depend on the
location where the trade takes place.

Fourth, multiple producers are located at the same node.
As a result, even if the system operator determines the
outflow of electricity power from every node, each user’s
share in that node should be determined. This may require
local markets among the users at each node.

Finally, demand consists of multiple consumers at differ-
ent nodes. Multiple consumers can be separated by the net-
work constraints. Therefore, they may each have a separate
market clearing price for buying electricity. This necessitates
markets to discover these separate prices.

IV. MARKET DESIGN FOR ELECTRICITY TRADE OVER
THE NETWORK: ONE USER PER NODE

We consider the model of Section II, that includes some
of the features presented in Section III, namely strategic
production/demand, exactly one user at each node (Nk = 1,
∀k ∈ N ), second order approximation of the flows (which
considers losses), and we assume that each node is connected
to at least two other nodes (|Rn| ≥ 3). This assumption is
required for technical purposes; specifically, the mechanism
we present in this section is efficient when |Rn| ≥ 3,
∀n ∈ N . In Section V, we extend the model to the case
where there is a maximum of one user in each node.



6

Note that Ink (given by Eq. (5)) is a convex function of
θn and θk, and en is convex functions of θRn

. The cost for
producing/consuming electricity at node n is un(en(θRn

)).
We assume that un is a strictly convex and increasing
function of en with un(0) = 0 (this is a standard assumption
in the literature). Since en is a convex function of θRn , un
is also a strictly convex function of θRn

(See [43], Theorem
5.1).

For this model, we present an efficient local public good
mechanism. As noted in Section II-B, a mechanism consists
of two components, a message space and an outcome func-
tion that are defined below.

Message Space The message space of the mechanism is
M =M1×M2× ....×MN , where Mn is the message space
of agent n, n ∈ N ,

Mn = [0, 2π]|Rn| × R|Rn|
+ , (7)

where |Rn| denotes the cardinality of Rn. A message mn ∈
Mn is defined by

mn = (θ̂nRn
, pnRn

) (8)

where

θ̂nRn
:= (θ̂n1 , θ̂

n
2 , ..., θ̂

n
|Rn|), (9)

pnRn
:= (pn1 , p

n
2 , ..., p

n
|Rn|), (10)

and 1, 2, 3, ..., |Rn| is an (arbitrary) indexing of the users
in Rn (this indexing is done for all sets Rk, k ∈ N ), and
θ̂nk (respectively pNk ) is the angle (respectively the price per
unit of angle) proposed by user n for user k ∈ Rn. If node
n0 ∈ Rn, then θ̂nn0

= 0. The messages (mn, n ∈ N ) are
communicated to the ISO.

Outcome Function The outcome function h is defined by
h :M1×M2× ...×Mn → [0, 2π]N ×RN , where for every
m := (m1,m2, ...,mN ) ∈M1 ×M2 × ...×MN ,

h(m) = ((θn(mRn
), tn((mRk

), k ∈ Rn)), n ∈ N ), (11)
mRn

= (mk, k ∈ Rn), (12)

θ(mRn
) =

1

|Rn|
∑
k∈Rn

θ̂kn, (13)

tn((mRk
), k ∈ Rn) =

∑
k∈Rn

ln,k(mRk
)θk(mRk

)

+
∑
k∈Rn

pnk (θ̂
n
k − θ̂

yn,k+1
k )2, (14)

lnk((mRk
)) = (p

yn,k+1
k − pyn,k+2

k ), (15)

and yn,k refers to the index of user n in Rk (yn,k 6= 0
whenever n ∈ Rk, yn,k = 0 when n 6= Rk). We note hat if
yn,k = |Rk| then

yn,k + 1 = 1, yn,k + 2 = 2. (16)

A. Interpretation of the Mechanism

As pointed out in the introduction, Kirchhoff’s laws cou-
ple the users’ production, therefore users must coordinate
their generation/consumption. This consideration results the
message space proposed for the mechanism.

The outcome function of the proposed mechanism
achieves two goals: (i) it eliminates the strategic users’
market power; (ii) if incentivizes the strategic users to
coordinate their production/consumption strategies. This is
done as follows. The money each user receives/pays consists
of two terms. The first term represents the payment a user
gets/makes as a result of his production/consumption that
depends on θnRn

). Note that the prices {lnk, k ∈ Rn}
according to which user n gets paid per unit of angle
(or pays per unit of angle) do not depend on his own
message. This eliminates the agent’s market power. The
prices {lnk, k ∈ Rn} depend on the indexing of agents in
Rk, k ∈ Rn. Nevertheless, we show in the next Section that
the properties of the proposed mechanism are independent
of this indexing. The second term incentivizes agents to
coordinate their production/consumption. At equilibrium,
where agents agree to coordinate their productions, this term
is equal to zero.

B. Analysis of the Mechanism

To establish the properties of our mechanism, we pro-
ceed as follows. First, we write down the Karush-Kuhn-
Tucker (KKT) conditions for problem (Socially Optimal
I) formulated in Section II-C. Then we formulate problem
(Best Response I) which determines a user’s best response
in the game induced by our mechanism, and write down
the KKT conditions for this problem. Finally, we use the
KKT conditions for problems Socially Optimal I and Best
Response I to derive the properties of our mechanism.

1) KKT Conditions of for Problem Socially Optimal I:
The objective function in problem (Socially Optimal I) is
strictly convex in θ = (θ1, θ2, ..., θN ).

The domain is convex because Ikj is a convex function of
θs and therefore the set of θs satisfying Ikj ≤ Lkj is convex,
and furthermore, the intersection of a finite number of convex
sets is also convex. Define this intersection by Dom(θ).
As a result, the above optimization is a strictly convex
optimization problem in θ. We present the Lagrangian and
KKT conditions for this problem. These conditions will be
useful in the analysis of the market design/mechanism we
propose. The Lagrangian is

H =
∑
n∈N

un(θRn
) +

∑
n∈N

µn(xn − en(θRn
))

+
∑
n,k∈N

λnk(Lnk − Ink) +
∑
n∈N

κn(en(θRn
) + wn)

(17)
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Considering that

∂Ink
∂θk

= −Bnk −Gnk × (θn − θk) (18)

∂Ink
∂θn

= Bnk +Gnk × (θn − θk) (19)

and

∂en(θRn
)

∂θk
=

{
−Bnk −Gnk × (θn − θk) k 6= n,∑
i∈Rn

Bni +Gni × (θn − θi), k = n,

(20)

the KKT conditions are
∂H

∂θn
|θ∗N ,λ∗

N×N ,µ
∗
N
= [

∑
k∈Rn

[u′k(ek)
∂ek(θRk

)

∂θn
− [µk − κk]

∂ek
∂θn

− λnk
∂Ink
∂θn

− λkn
∂Ikn
∂θn

]|θ∗N ,λ∗
N ,µ

∗
N
=

[
u′n(en)× [

∑
i∈Rn

Bni +Gni × (θn − θi)]+∑
k 6=n,k∈Rn

u′(ek)× [−Bkn −Gkn × (θk − θn)]

− [µn − κn]× [
∑
i∈Rn

Bni +Gni × (θn − θi)]

−
∑

k∈Rn,k 6=n

[µk − κk][−Bnk −Gnk × (θn − θk)]

−
∑
k∈Rn

λnk[+Bnk +Gnk × (θn − θk)]

−
∑
k∈Rn

λkn × [−Bkn −Gkn(θk − θn)]
]
|θ∗N ,λ∗

N×N ,µ
∗
N
= 0

(21)

λkn(Lkn − Ikn)|θ∗N ,λ∗
N×N ,µ

∗
N
= 0, ∀k, n ∈ N (22)

µn(xn − en)|θ∗N ,λ∗
N×N ,µ

∗
N
= 0, ∀n ∈ N (23)

κn(en + wn)|θ∗N ,λ∗
N×N ,µ

∗
N
= 0, ∀n ∈ N (24)

λnk ≥ 0, κn ≥ 0, µn ≥ 0|θ∗N ,λ∗
N×N ,µ

∗
N
. (25)

2) Problem Best Response I and its KKT Conditions: In
the game induced by this mechanism, user n’s best response
to the message m−n of all other users in Rn is determined
by the solution of the following problem, that we call Best
Response I,

min
θ̂nRn

,pnRn

un
(
en(θRn

(m−n, θ̂
n
Rn

))
)
− tn(m−n, θ̂nRn

, pnRn
)

(Best Response I)
s.t. − wn ≤ en ≤ xn (26)

Ink ≤ Lnk ∀k ∈ Rn (27)
Ikn ≤ Lkn ∀k ∈ Rn (28)
pnk ≥ 0 k ∈ Rn (29)

where Ink and en are determined by Equations (5) and (6),
respectively.

This is a strictly convex optimization problem in mn.
We present the Lagrangian and the KKT conditions for the
problem. The Lagrangian is

Hn = un(en
(
θRn

(m−n, θ̂
n
Rn

)
)
)− tn(m−n, θ̂nRn

, pnRn
)

+ µ̂n(xn − en) +
∑
k∈Rn

[λ̂nk(Lnk − Ink)+

λ̂kn(Lkn − Ikn)] +
∑
k∈Rn

γ̂nkp
n
k + κ̂n(wn + en) (30)

Considering that

∂θn

∂θ̂kn
=

1

|Rn|
, (31)

the KKT conditions at m−n,m∗n, λ̂
∗
nk, µ̂

∗
n, κ̂
∗
n, γ̂
∗
n are:

∂Hn

∂θ̂nn
= u′n(en)×

∂en
∂θn
× ∂θn

∂θ̂nn
− ∂tn

∂θ̂nn

− (µ̂n − κ̂n)
∂en
∂θn

∂θnn

∂θ̂nn

−
∑
k∈Rn

[λ̂nk
∂Ink
∂θn

∂θn

∂θ̂nn
+ λ̂kn

∂Ikn
∂θn

∂θn

∂θ̂nn
]

= u′n(en)[
∑
i∈Rn

Bni +Gni × (θn − θi)]×
1

|Rn|

− lnn
1

|Rn|
− 2pnn(θ̂

n
n − θ̂yn,n+1

n )+

− (µ̂n − κ̂n)[
∑
i∈Rn

Bni +Gni × (θn − θi)]
1

|Rn|

−
∑
k∈Rn

[λ̂nk(Bnk +Gnk(θn − θk))
1

|Rn|
+

λ̂kn(−Bkn −Gkn(θk − θn))
1

|Rn|
] = 0 (32)

∂Hn

∂θ̂nk
= u′n(en)×

∂en
∂θk
× ∂θk

∂θ̂nk
− ∂tn

∂θ̂nk

− (µ̂n − κ̂n)
∂en
∂θk

∂θk

∂θ̂kn
− λ̂nk

∂Ink

∂θ̂nk
− λ̂kn

∂Ikn

∂θ̂nk
=

u′n(en)[−Bnk −Gnk × (θn − θk)]×
1

|Rk|
− lnk

1

|Rk|
− 2pnk (θ̂

n
k − θ̂

yn,k+1
k )+

− (µ̂n − κ̂n)[−Bnk −Gnk × (θn − θk)]
1

|Rk|

− λ̂nk(Bnk +Gnk(θn − θk))
1

|Rk|

− λ̂kn(−Bkn −Gkn(θk − θn))
1

|Rk|
= 0, ∀k ∈ Rn, k 6= n

(33)
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∂Hn

∂pnk
= − ∂tn

∂pnk
= (θ̂nk − θ̂

yn,1+1
k )2

+ γ̂nk = 0 ∀k ∈ Rn (34)

λ̂nk(Lnk − Ink) = 0 (35)
µ̂n(xn − en) = 0, γ̂nkp

n
k ≥ 0 (36)

κ̂n(wn + en) = 0, γ̂nkp
n
k ≥ 0 (37)

λ̂nk, κ̂n, µ̂n, γ̂n ≥ 0 (38)

3) properties of the Proposed Mechanism: We prove that
our mechanism is efficient through the following results.

Theorem IV.1. The set of NE of the game induced by the
mechanism is non-empty. Furthermore, the outcome corre-
sponding to each Nash equilibrium (NE) is a solution of the
centralized problem of Section II-C (Socially Optimal I), and
at each NE the mechanism is budget-balanced, individually
rational and price efficient.

Theorem IV.2. At equilibrium, each user’s payment consists
of the followings: (i) his production/consumption at a price
equal to his marginal utility, (ii) half of the loss for his node
at a price equal to the marginal utility, and (iii) the power
flow from his node to each line going out of it minus half
of the loss at the congestion cost of the link. This means the
producers and consumers share the cost of loss equally.

When there is no loss in the system (i.e. DC approximation
of the flows), payments are according to the nodal pricing
system.

The proof of the above theorems appears in the Appendix.

C. Comparison with the Existing Designs

We compare our mechanism with other mechanisms cur-
rently used in electricity markets. The Vickrey-Clark-Groves
(VCG) mechanism implements the social cost correspon-
dence in dominant strategies. But it is not budget balanced;
within the context of electricity networks, VCG results
in budget surplus, but this surplus does not provide the
correct signal for investment in the network’s infrastructure
(VCG does not use prices, thus it does not discover the
right/efficient prices). Supply function mechanisms (SFM)
and Cournot mechanisms are also used in electricity markets.
Both of these mechanisms are budget balanced and indi-
vidually rational; the Cournot mechanism is price efficient
but the SFM mechanism is not. Neither Cournot nor SFM
implement the social cost correspondence in Nash equilibria.

V. MARKET DESIGN FOR ELECTRICITY TRADE OVER
THE NETWORK: SPARSE NETWORKS

Sparsity is a property of electricity networks meaning
there could be nodes without any users located at them or at
any of the nodes in their immediate neighborhood. We call
these nodes isolated nodes. We extend the model presented
in Section II-A to the case of sparse networks where there are
isolated nodes. To address sparsity within the context of our
problem we first establish the necessary notation. We denote,

as before, by Rn the set of nodes in the neighborhood of
node n. We define the extended neighborhood of node n,
denoted by Rextn , to be the set of nodes k ∈ K such that
there exists a path from n to k that does not include any user
other than the one in node n and possibly the one at node
k. Furthermore, we define N ext

n to be the set of users that
belong to Rextn . We note that Rn and Rextn include node
n, and N ext

n includes the user at node n, if there is any.
Note that for sparse networks, by definition |N | ≤ |K| and
|N ext

n | ≤ |Rextn | (because there may not be any user in some
of the nodes). For technical reasons we assume |N ext

n | ≥ 3.
To extend our mechanism to sparse networks we proceed

as in Section IV. We first define the centralized problem
for sparse networks and then present the local public good
mechanism. We interpret the mechanism and establish its
properties.

A. The Centralized Problem

The centralized electricity dispatch problem in this case
is

θ∗K = arg min
θk,k∈K

∑
n∈N

un(en(θRn)) (Socially Optimal II)

s.t. − wn ≤ en(θRn
) ≤ xn ∀n ∈ N (39)

Ink ≤ Lnk ∀n, k ∈ K (40)
em = 0 ∀m ∈ K,m /∈ N (41)

where Ink and en are determined by Equations (5) and (6)
respectively.

B. The Local Public Good Mechanism

To address the network sparsity issue, we extend the
mechanism of Section IV in the following way.

Message Space The message space of the mechanism is
M = M1 ×M2 × ... ×MN , where Mn is the message of
agent n ∈ N ;

Mn = [0, 2π]|R
ext
n | × R|R

ext
n |

+ , (42)

where |Rextn | denotes the cardinality of Rextn . A message
mn ∈Mn is defined by

mn = (θ̂nRext
N
, pnRext

n
), (43)

where

θ̂NRext
n

:= (θ̂n1 , θ̂
n
2 , ..., θ̂

n
|Rext

n |) (44)

pnRn
ext

:= (pn1 , p
n
2 , ..., p

n
|Rext

n |) (45)

1, 2, 3, ..., |Rextn | is an (arbitrary) indexing of the users in
Rextn (this indexing is done for all sets |Rextk |, k ∈ N ),
and θ̂nk (respectively, pnk ) is the angle (respectively, the price
per unit of angle) proposed by the user in node n for node
k ∈ Rextn . If node n0 ∈ Rextn then θ̂nn0

= 0. The messages
(mn, n ∈ N ) are communicated to the ISO.

Outcome Function The outcome function h is defined by

h :M1 ×M2 × ...×Mn → [0, 2π]N × RN (46)
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Fig. 1. Example of a network with 9 nodes, 6 users and 1 isolated node.

where for each m := (m1,m2, ...,mN ) ∈M1 ×M2 × ...×
MN ,

h(m) = (θn(mN ext
n

), tn(mN ext
k
, k ∈ Rextn ) (47)

θn(mN ext
n

) =
1

|N ext
n |

∑
k∈N ext

n

θ̂kn (48)

tn((mN exkt, k ∈ Rextn ) =
∑

k∈Rext
n

lnk((mN ext
k

), k ∈ N ext
n )

× θk(mN ext
k

) +
∑

k∈Rext
n

pnk (θ̂
n
k − θ̂y

ext
n,k+1), (49)

ln,k((mN ext
k

), k ∈ N ext
n ) = (py

ext
n,k+1 − py

ext
n,k+2) (50)

and yextn,k refers to the index of user n in N ext
k (yextn,k 6= 0

whenever n ∈ N ext
k , yn,k = 0, n 6∈ N ext

k ); if yextn,k = |N ext
k |

then yextn,k + 1 = 1, yextn,k + 2 = 2.

C. Interpretation of the Mechanism

The mechanism that was presented in Section IV cannot
be used for sparse networks, because according to it no
user bids for the angle of an isolated node; therefore, the
mechanism of Section IV fails to determine the angles at
isolated nodes. Moreover, the messages sent by users on
the two sides of an isolated node and the outcomes for
these users become completely decoupled/independent. To
clarify the above statements consider the network of Figure
1 with node 1 being the slack bus/node. According to the
mechanism of Section IV, users 1, 2 and 3 bid for the
angles at nodes 1, 2, 6 and 7. Users 4, 5 and 6 bid for
the angles of nodes 4, 5, 8 and 9. Therefore, the mechanism
fails to determine the angle at node 3 that is an isolated
node. Moreover, the messages sent by users 1, 2 and 3, and
the outcomes for nodes 1, 2, 6 and 7 become decoupled from
the messages sent by users 4, 5 and 6, and the outcomes for
nodes 4, 5, 8 and 9.

The differences between the mechanism in this section and
the one in Section IV are: (i) Each user bids for the angles
and prices of all the nodes in Rextn instead of Rn. Thus, the
mechanism determines the angles at all nodes of the network.
(ii) The outcome angles are determined by averaging over
N ext
n instead of Rn. (iii) The payment of the user at node

n is sum of all his payments for the angles of the nodes in
Rextn .

D. Properties of the Mechanism

The mechanism proposed in Section V-B possesses the
same properties as the mechanism proposed in Section IV.
These properties can be proved in the same way as the
properties of the mechanism of Section IV. We refer the
reader to [44] for all the details of the proofs.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we considered electricity wholesale markets
with multiple strategic users that possess localized informa-
tion about the electricity network. Using ideas from auctions
and local public goods, we designed a mechanism that
maximizes the social welfare (the sum of the users’ utilities)
and has the following additional features. It satisfies the
users’ informational constraints along with the constraints
imposed by the lines’ thermal limit and the network’s
physical laws (Kirchhoff’s laws), it is budget balanced,
individually rational, and price efficient.

The model we used in our paper is a second-order
approximation of the AC model. The performance of this
approximation was numerically evaluated and compared to
the performance of the AC model in [45], Appendix A, Table
A.1. The model used in [45] is the same as the model of
our paper, but in [45] it is assumed that the network users
(consumers and producers) are non-strategic. Nevertheless,
our market design and that of [45] (the two designs are
distinctly different) result in the same power flows and angles
as the solution of the centralized optimization problem for
the second-order approximation model (Socially Optimal I).
For this reason, the numerical results of [45] apply to/are
valid for the problem studied in this paper. These results
show that along individual links, the difference in flows and
phase angles between the second-order approximation model
and the AC model is very small.

The game form presented in this paper ensures that
the desired allocations are achieved at equilibria without
specifying how an equilibrium is reached. That is, this game
form/mechanism does not specify an iterative process that
determines how the NE of the game induced by the mech-
anism are computed by the producers. Determining such an
iterative process is an open problem. Other open problems
arise by extending/generalizing the model of Section IV.
Possible generalization of the model include: (1) The case
where multiple producers are located at the same node. Such
a node is a dense node compared to the model of Section
IV. As a result, even if the system operator determines the
outflow of electricity power from that node, each user’s share
in that node is not determined yet. Determining each user’s
share requires local markets among the users at a dense
node. (2) The case where there are M utility companies who
own the N producers, and one company can own more than
one producer. When multiple producers at different nodes
are owned by a single generation company, this company
maximizes its aggregate utility from all the producers it
owns. As a result, it may strategically produce more at one
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of its producers (e.g. have negative utility for that single
producer), in order to congest the lines and decompose/break
the network into separate local markets. He can then exercise
its local market power through its producers at those markets.
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APPENDIX

Proof of Theorem IV.1 Let m∗ be a Nash Equilibrium
of the game induced by the mechanism. We establish the
assertion of this theorem in the following six steps.

Step 1: We first prove that at equilibrium,

t∗n =
∑
k∈RN

l∗nkθ
∗
k (51)

or equivalently,

pn∗k (θ̂n
∗

k − θ̂
yn,k+1∗
k )2 = 0 ∀k ∈ Rn (52)

We establish Eq. (52) by contradiction. Assume pnk (θ̂
n
k −

θ̂
yn,k+1
k )2 6= 0; then user n can change his price proposal
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to pnk = 0, without changing the rest of his message, and
increase his utility. This means m∗n is not his best response
to m∗−n, a contradiction.

Step 2: By construction
∑
k∈Rn

l∗nk = 0. Therefore, using
the first step, the total payments in the system add up to zero:∑

n∈N
t∗n =

∑
n∈N

(
∑
k∈Rn

lnk)× θn = 0. (53)

This means the mechanism is budget balanced at equilib-
rium.

Step 3: To prove that the outcome corresponding to every
NE of the game induced by the mechanism is socially
optimal, it is sufficient to show that we can recover the
KKT conditions of Problem (Socially Optimal I), from
the KKT conditions of Problem (Best Response I). Let
θ̂n

∗

Rn
, pnRn

∗, λ̂∗nk, µ̂
∗
n, γ̂
∗
nk, n, κ̂

∗
n, k ∈ N describe a NE of the

game along with the corresponding dual variables. We claim
that the following set of variables is a solution for Problem
(Socially Optimal I).

θn =

∑
k∈Rn

θ̂k
∗

n

|Rn|
(54)

λnk = 2× λ̂∗nk, n 6= k (55)
µn = µ̂∗n, κn = κ̂∗n (56)

For that matter we note that by Eq. (32) and (33)∑
k∈Rn

∂Hk

∂θ̂kn
= [u′n(en)

∂en(θRn)

∂θn
− µ̂n

∂en
∂θn

+
∑

k∈Rn,k 6=n

−λ̂nk
∂Ink
∂θn

− λ̂kn
∂Ikn
∂θn

]× 1

|Rn|

+
∑

k∈Rn,k 6=n

[u′k(ek)
∂ek(θRk

)

∂θn
+ (κ̂n − µ̂k)

∂ek
∂θn

+

− λ̂nk
∂Ink
∂θn

− λ̂kn
∂Ikn
∂θn

]× 1

|Rn|

+
∑
k∈Rn

lnk
1

|Rn|
+
∑
k∈Rn

−2pkn(θ̂kn − θ̂
yk,n+1
n ) = 0 (57)

Considering Eq. (57) and Eq. (52), along with the fact that
by construction

∑
k∈Rn

lnk = 0, and taking into account the
variables defined in Eqs. (54)-(56) we obtain.

u′k(ek)
∂ek(θRk

)

∂θn
+ (κk − µk)

∂ek
∂θn

− λnk
∂Ink
∂θn

− λkn
∂Ikn
∂θn

= 0, (58)

which is Eq. (21), the first KKT condition of Problem
(Socially Optimal I). The other KKT conditions, Eqs. (22)-
(25), hold because of Eqs. (35)-(38).

Step 4: We prove the existence of NE for the game induced
by the mechanism in two stages. In the first stage, we
introduce a new optimization problem for each user, called
surrogate optimization problem. We show that collectively,
these surrogate optimization problems have the same solu-
tion as the centralized problem (Socially Optimal I). In the

second state, we use the surrogate optimization problems
to prove the existence of NE for the game induced by the
mechanism.

First Stage: Let (θ∗N , λ
∗
N , µ

∗
N ) denote the unique solution

and corresponding dual variables of Problem (Socially Op-
timal I). Define the following individual prices calculated at
(θ∗N , λ

∗
N , µ

∗
N ).

l̃∗n,n = u′n(en)×
∂en
∂θn

+ (κn − µn)
∂en
∂θn

−
∑
k∈Rn

[
λnk
2

∂Ink
∂θn

+
λkn
2

∂Ikn
∂θn

] (59)

l̃∗n,k = u′n(en)×
∂en
∂θk
− (µn − κn)

∂en
∂θk

− λnk
2

∂Ink
∂θk

− λkn
2

∂Ikn
∂θk

. (60)

Consider the following (individual) optimization problem for
n.

min
θsur
Rn

un
(
en(θRn

)
)
−
∑
k∈Rn

l̃∗nkθk

(Surrogate Optimization I)
s.t. − wn ≤ en ≤ xn (61)

Ink ≤ Lnk ∀k ∈ Rn (62)
Ikn ≤ Lkn ∀k ∈ Rn (63)

where Ink and en are determined by Equations (5) and (6),
respectively. This is a strictly convex optimization in θnRn

.
We present the Lagrangian and the KKT conditions for the
problem. The Lagrangian is

Hsur
n = un

(
en
(
θnRn

)
)
−
∑
k∈Rn

l̃∗nkθk + µsurn (xn − en)+

κsurn (wn + en) +
∑
k∈Rn

[λsurnk (Lnk − Ink) + λsurkn (Lkn − Ikn)]

(64)

The KKT conditions at θn∗Rn
, λsur∗nk , µsur∗n , κsur∗n are:

∂Hsur
n

∂θn,surn
= u′n(en)×

∂en
∂θn,surn

− l̃∗nn − (µn − κn)
∂en

∂θn,surn

−
∑
k∈Rn

[λsurnk

∂Ink
∂θn,surn

+ λsurkn

∂Ikn
∂θn,surn

] = 0, (65)

∂Hsur
n

∂θsurk

= u′n(en)×
∂en

∂θn,surk

− l̃∗nk − (µn − κn)
∂en

∂θn,surk

− λsurnk

∂Ink
∂θn,surk

− λsurkn

∂Ikn
∂θn,surk

= 0 ∀k ∈ Rn, k 6= n

(66)
λsurnk (Lnk − Ink) = 0 (67)
µsurn (xn − en) = 0, κsurn (wn + en) = 0, (68)
λsurnk , κ

sur
n , µsurn , γsurn ≥ 0 (69)

Using Eqs. (59) and (60) it is straightforward to show
that (θ∗Rn

, µ∗n, κ
∗
n,

λ∗
nk

2 ) : k ∈ Rn) from the solution of
Problem (Socially Optimal I) is a solution to the surrogate



12

optimization problem at n. Thus, collectively these surrogate
optimization problems result in the solution of the central-
ized optimization problem (Socially Optimal I).

Second Step: We construct a NE of the game induced
by the mechanism by showing that the KKT conditions
of Problem (Best Response I) are satisfied. Let r∗ =
(θ∗N , λ

∗
N×N , µ

∗
N , κ

∗
N ) be the solution to Problem (Socially

Optimal I). From the first stage above, we know that this is
also a solution for the surrogate problems.

Consider r̂∗ = (θ̂∗N , p
∗
N , µ̂

∗
N , κ̂

∗
N , λ̂

∗
N×N ) to be a solution

to the following equations:

θ̂kn = θ∗n, pkn − p
yk,n+1
n = l̃kn (70)

pkn ≥ 0, λ̂kn = λ∗kn/2, µ̂n = µ∗n κ̂n = κ∗n,∀k, n ∈ N
(71)

Note that for Eq. (70) to have a solution, we should have∑
j∈Rk

l̃jk = 0 (72)

which is true by Eq. (15).
The KKT conditions of Problem (Surrogate Optimization

I) show that at r̂∗, the KKT conditions for Problem (Best
Response I) are satisfied and therefore, r̂∗ defines a NE and
the corresponding dual variables.

Step 5: As shown in Step 3, the outcome corresponding
to any NE of the game induced by the mechanism is a
solution of Problem (Socially Optimal I). The prices at
equilibrium are given by Eqs. (59) and (60). These are the
efficient prices because they consist of the following three
parts: the marginal cost of production with respect to angles,
u′n(en) × ∂en

∂θk
, the saturation price for limited production

capacity −(µn − κn)
∂en
∂θk

, and the lines congestion price
−λnk

2
∂Ink

∂θnk
− λkn

2
∂Ikn

∂θnk
.

Step 6: To prove individual rationality, first note that at
equilibrium

l∗n,k =
∂un
∂θk
|m∗ . (73)

Therefore, the total utility of user n at equilibrium is

un(en(θ
∗
Rn

))−
∑
k∈Rn

∂un
∂θk
|m∗ × θ∗k (74)

Since un(en(θRn
)) is strictly convex in θRn

and un(0) = 0,
the value of (74) at any NE m∗, which determines the cost
of user n at m∗, is non-positive i.e. user n’s benefit at m∗

is non-negative.
Proof of Theorem IV.2 By Theorem IV.1, at the equi-

librium of the game induced by the mechanism θ̂∗Rn
= θ∗Rn

and the individual prices l∗nk are determined by Eqs. (59)
and (60).

Define lossnk to be the loss in line from n to k, and lossn
to be the total loss in all the lines going out of node n; then,

lossnk =
1

2
Gnk(θn − θk)2 (75)

and

lossn =
∑
k∈RN

1

2
Gnk(θn − θk)2 (76)

The equilibrium payment to the user located at node n,
according to Eqs. (53), (59) and (60), is

t∗n =
∑
j∈Rn

l∗njθ
∗
j = [u′n(e

∗
n)− µ∗n + κ∗n] (77)

× [
∑

j∈Rn,j 6=n

(−Bnj −Gnj(θ∗n − θ∗j ))× θ∗j

+ (
∑
j∈Rn

Bnj +Gnj × (θ∗n − θ∗j ))× θ∗n]

+
∑
j∈Rn

λ∗nk + λ∗kn
2

[Bnk(θ
∗
n − θ∗k) +Gnk(θ

∗
n − θ∗k)2] (78)

= [u′n(e
∗
n)− µ∗n + κ∗n]× [e∗n +

1

2
Loss∗n]+∑

j∈Rn

(
λ∗nk + λ∗kn

2
)(Ink +

loss∗nk
2

) (79)

This payment consists of the components mentioned in the
statement of the Theorem.

When the loss is zero, the payments are equal to those of
the nodal pricing system.
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